
1 October 1998 Delphi Informant

October 1998, Volume 4, Number 10

Interfacing with the Leading Report Writer

ON THE COVER
6 Crystal Reports � Dennis Butler
It’s the most successful report writer in Windows programming, but
it’s woefully neglected by most Delphi developers. Mr Butler explains
why, and — more importantly — demonstrates how to put Crystal
Reports to work in your next Delphi application.

FEATURES
13 Dynamic Delphi
Reports in DLLs � Neville Kelly
For many programs, maintaining the application means modifying
the reports. Wouldn’t it be nice if the reports were all in one DLL that
could be readily replaced? Mr Kelly shows how it’s done.

19 Algorithms
Topological Sorting � Rod Stephens
Mr Stephens provides algorithms for ordering tasks, from arranging a
course schedule, to planning building construction, to scheduling
module testing for your biggest software projects.

23 Greater Delphi
Writing to the NT Event Log � Ted Houts
The NT Event Log can consolidate, filter, and group all error messag-
ing in one location. And Mr Houts can demonstrate how to take
advantage of its capabilities from a Delphi application.

30 DBNavigator
Delphi Database Development: Part II � Cary Jensen, Ph.D.
Dr Jensen continues his database series by examining the descendants
of the TDBDataSet class, with step-by-step examples for using Table,
Query, and StoredProc components.

REVIEWS
36 Wise Installation System 6.01

Product Review by Bill Todd

40 WPTools
Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
46 From the Trenches by Dan Miser
47 File | New by Alan C. Moore, Ph.D.

Cover Art By: Tom McKeith

2 October 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Baltic Solutions Releases HTMLReport 2.0

Baltic Solutions released

HTMLReport 2.0, which
generates HTML reports in
a Delphi program.
HTMLReport 2.0 gener-
ates reports not only from
BDE-compliant databases,
but also from abstract
sources, including plain
text file databases or a set of
Pascal variables.

With HTMLReport 2.0,
you can send HTML
reports by e-mail and view
them with an HTML
browser, or transform them
into text format and print a
draft. You can generate a
multi-level report and view it
with a built-in HTML brows-
er, and view source data from
Chant Offers SpeechKit 2
HTMLReport by clicking on
an HTML link. You can also
use your favorite HTML edi-
tor or viewer to design or view
a report.

Baltic Solutions
Price: Standard (without source), US$60;
Professional (with source), US$136.
Web Site: http://www.balticsolutions.
com
Chant Inc. announced the
availability of SpeechKit 2,
component software for
adding speech recognition
and speech synthesis (text-
to-speech) capabilities to
desktop and Web-enabled
applications. With their
voices, users can fill out
forms, query databases,
enter transactions, navigate
applications, ask questions,
and get responses without
using a mouse or keyboard.
SpeechKit 2 manages vocab-
ularies and places recog-
nized utterances directly in
form fields, query windows,
or transaction windows.

SpeechKit 2 enables devel-
opers to build speech-aware
applications with minimal
programming. SpeechKit 2
isolates applications from
the complexities of speech
engine APIs, managing
vocabularies, and displaying
optional visual cues. The
component software elimi-
nates the need for applica-
tion code to access low-level
APIs, create and manage
data structures, and handle
OS events.

SpeechKit 2 works with
applications developed
using Delphi, Visual C++,
Visual Basic, Visual J++,
Visual FoxPro, Smalltalk,
C++Builder, and JBuilder.

SpeechKit 2 works with
speech recognition and text-
to-speech engines that support
Microsoft’s Speech API and
IBM’s Speech Manager API.

SpeechKit 2 also
supports ANSI sin-
gle-byte, multi-
byte, and Unicode
characters that
enable applications
to support multi-
ple languages and
locales.

Chant Inc.
Price: US$399 per devel-
oper, no royalties;
SpeechKit 2 is available in
ActiveX, Java JNI, and
C/C++ DLL forms.
Phone: (888) 8CHANT8
Web Site: http://www.
chant.net

http://www.balticsolutions.com
http://www.balticsolutions.com
http://www.chant.net
http://www.chant.net

3 October 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

HotData Launches Internet Service for Automated Data Access

HotData, Inc. announced

the release of HotData 1.0, a
service that delivers data
items directly into desktop
software applications via the
Internet.

Software developers can
embed HotData functionality
into new or existing applica-
tions using the HotData
Developer’s Kit (HDK). It
supports Windows 95/98/NT
Mustang Announces IMC
development environments,
including Delphi, C/C++,
PowerBuilder, Visual Basic,
and Excel, and is available to
qualified developers at no
charge.

Once enabled with
HotData, applications con-
nect via the Internet to the
HotData system, an online
data clearinghouse containing
a variety of data items, such
 Architect
as contact information,
phone and fax numbers,
credit ratings, SIC codes,
CASS, and demographics.
The data is provided by a
group of data vendors.

The company has targeted
developers of sales force
automation applications
because the market segment
is best suited for the com-
pany’s existing data sets.
HotData provides informa-
tion to save time for sales-
people searching for relocat-
ed customers; finding tele-
phone, e-mail, and fax num-
bers; and looking up busi-
ness profiles.

HotData, Inc.
Price: HDK is free to qualified develop-
ers; end-users of HotData-enabled

applications pay a usage fee
(usually between US$.02 to
US$.15) for the data they
acquire; discounts are given
for large batch requests.
Phone: (800) HOT DATA or
(512) 646-6000
Web Site: http://www.
hotdata.com
Mustang Software, Inc.
announced the availability of
IMC Architect for its Internet
Message Center (IMC). By
integrating IMC’s client fea-
tures into third-party desktop
applications, call centers can
use IMC Architect to reduce
the number of desktop appli-
cations required to handle
customer e-mail.

Application developers can
use IMC Architect to add
IMC real-time statistics to
existing monitoring tools, or
e-mail tracking features to
existing enterprise applica-
tions, computer-telephony
integration systems, or any
proprietary enterprise appli-
cation.

IMC Architect leverages
Microsoft’s COM technology
to ensure interoperability in
development environments,
including Delphi, Visual J++,
Visual Basic, and Perl.
This open, standards-based

architecture provides flexi-
bility to integrate new
applications into call cen-
ters as business needs
evolve.

Mustang Software, Inc.
Price: US$7,500 for an enterprise site
license.
Phone: (805) 873-2500
Web Site: http://www.mustang.com

http://www.hotdata.com
http://www.mustang.com
http://www.hotdata.com

4 October 1998 Delphi Informant

Excel Software Ships WinA&D 2.1Delphi
T O O L S

New Products
and Solutions
Excel Software announced
the availability of WinA&D
2.1, which supports system
analysis, requirements speci-
fication, software design, and
code generation for a range
of software engineering
methods and notations.
Version 2.1 adds a Contents
view for diagram editors,
built-in zip archives for pro-
ject documents, the
WinA&D API, enhanced
color support, and auto-
mated inheritance graphs
for object-oriented
designs. WinA&D 2.1 is
available in Standard,
Desktop, Educational,
and Developer editions.

WinA&D 2.1 supports
diagram editors for data,
class, state, object, struc-
ture, and task models.

Instant inheritance
graphs can be generated
from root classes in the
object-oriented design
dictionary. Sophisticated
algorithms provide a
concise inheritance
graph to express the
class inheritance struc-
ture of design projects
containing thousands of
AnyWare Offers AppTools
object classes. Designers can
edit class properties from the
inheritance graph.

COM automation is used
to provide the WinA&D
API. User-developed tools
can supplement features in
WinA&D, access document
data, and be executed as
stand-alone programs or as
supplemental WinA&D
commands. Languages such
as Delphi, Visual Basic, Java,
 VCL 1.04
and C/C++ can access the
WinA&D API.

Excel Software
Price: US$695, Standard; US$1,295,
Desktop; US$845, Educational;
US$1,995, Developer; upgrade pricing
is available. WinA&D 2.1 can be pur-
chased as a single-user, five-user, or
unlimited-user site license.
Phone: (515) 752-5359
Web Site: http://www.excelsoftware.
com
AnyWare Ltd. is offering
AppTools VCL 1.04, which
contains four components
and detailed example appli-
cations with source code for
Delphi and C++Builder.

The TWizard component
provides drop-in Wizard
functionality. Developers
can drop this component
onto a form that has a
TNotebook component and
two TButton or TBitBtn
components, set the corre-
sponding properties of
TWizard, and define the
routes that can be taken
using the custom property
editor provided.
TSplashScreen offers flexi-
ble drop-in splash screen
capability options that allow
developers to customize the
behavior of the splash
screen.

TTipOf TheDay enables
developers to create a drop-
in Tip Of The Day form by
dropping the component on
a form, assigning some
strings to the Tips property,
and running the application.
No code is needed for basic
uses. TTipOf TheDay auto-
matically stores the “last tip
shown” information in an
.INI file or the registry.

The TBrowseButton com-
ponent creates a Browse but-
ton that allows the user to
select a file using a standard
Open dialog box, and
assigns the selected file’s
name to an associated edit
control.

AppTools VCL 1.04 is a
native Delphi VCL and
comes with a comprehensive
Delphi- and C++Builder-
compatible Help file.

AnyWare Ltd.
Price: US$20 (includes half-price dis-
count on major upgrades and free minor
version upgrades).
Fax: +44 0 117 973 6888
Web Site: http://www.anyware.co.uk

http://www.excelsoftware.com
http://www.excelsoftware.com
http://www.anyware.co.uk

5 October 1998 Delphi Informant

News
L I N E

Oc tobe r 1998

INPRISE Named Among Top Enterprise Vendors

Eshed Announces Gentia Wizard
Scotts Valley, CA — Software
Magazine, a monthly publica-
tion for senior information
technology managers and
enterprise software profession-
als, has recognized INPRISE
Corp. as a premier provider of
enterprise-class application
development tools in its annu-
al “Software 500” listing of top
corporate software vendors.

In addition to corporate
recognition, INPRISE’s
Borland family of enterprise
development tools has received
a number of recent industry
awards and positive product
reviews. The company’s
Borland JBuilder was selected
INPRISE and Referentia
Training Software
the industry’s best Java devel-
opment environment by
VARBusiness and BYTE maga-
zines, while JBuilder and
to Deliver JBuilder

Errors and
Borland Delphi were named
among the top 100 software
products of the year by
Windows Magazine.
Or Yehuda, Israel — Eshed
Information Systems
announced it has developed
Gentia Wizard, a solution for
generating reports for the
Datawarehouse Gentia tool.
The system works in the
Windows 95 environment and
was developed using Delphi 3.
The system uses a Borland

Database Engine on an Oracle
database and guides users
through nine steps for report
building. The user chooses the
dimensions and the elements
to be included in the report
(including defining hierarchi-
cal dimensions and dimension
nesting levels), creates integrat-
ed and computerized ele-
ments, and sets the calculation
order and the order of appear-
ance of all the elements in the
report. At the end of the
process, the system exports an
interface file retrieved by the
Gentia Wizard and presents
the report as requested.
The dimensions and the ele-

ments presented by the system
have a structure based on a
hierarchical tree, offering the
user rapid (and intuitive)
access to the data.

Eshed Information Systems
is involved in the develop-
ment of information systems
using Delphi and an Oracle
database.
Omissions
Scotts Valley, CA and
Honolulu, HI — INPRISE
Corp. and Referentia Systems
Inc. announced the availability
of a computer-based multime-
dia training tool for software
developers who want to learn
advanced Java application
development techniques.
Referentia for JBuilder is a
modular and integrated learn-
ing system for Borland
JBuilder 2, INPRISE’s family
of visual development tools for
building corporate and enter-
prise software applications
with Java.

INPRISE also launched a
JBuilder Web site to help
developers build, manage, and
deploy sophisticated Java appli-
cations using JBuilder 2’s Java
deployment server capabilities.
The first volume of the train-

ing system, “Volume I:
Getting Productive in JBuilder
2,” is available to JBuilder 2
users and other interested par-
ties for US$9.95. Volume I
offers a starter set of more
than 15 lessons, overviews,
and concept animations about
working efficiently and pro-
ductively in Borland JBuilder
2. Topics covered include the
JBuilder 2 Editor,
AppBrowser, BeansExpress,
Debugger, and more.
The Volume I starter CD

and information on additional
volumes are available from
Referentia Systems at (800)
569-6255 or (808) 396-1232,
or online at http://www.
referentia.com/jbuilder.
INPRISE Centralizes
European Organization

INPRISE Corp. announced the
centralization of its European
operations into one region

headquartered in Amsterdam,
and named Gidi Schmidt Vice

President and General
Manager for the company’s

European operations.
The new structure is part of a
global initiative to structure

INPRISE’s operations to reflect
the company’s focus on enter-

prise-level products and services.
Under the European structure,

sales, marketing, and administra-
tion will be coordinated from

INPRISE’s European headquarters
in Amsterdam. Previously, INPRISE
was organized into Western and

Eastern European regions.
Some major errors slipped by us in the September, 1998
issue of Delphi Informant. Both occur in Bill Todd’s article,
“Procedure Variables.” On page 18, it’s stated that method
and function pointers are declared this way:

type
TSomeProc = (SomeInt: Integer);

TSomeFunc = (SomeString: string): Boolean;

This is incorrect; the procedure and function keywords are
missing. Here are the correct declarations:

type
TSomeProc = procedure(SomeInt: Integer);
TSomeFunc = function(SomeString: string): Boolean;

A similar error appears on page 19 regarding method point-
ers. Here is the correct code:

type
TSomeProc = procedure(SomeInt: Integer) of Object;

TSomeFunc = function(SomeString: string): Boolean of Object;

Thanks to Jay Lazarus for the correction. We apologize for
any confusion these errors caused.

http://www.referentia.com/jbuilder
http://www.referentia.com/jbuilder

6 October 1998 Delphi Informant

Crystal Reports
Interfacing with the Leading Report Writer

On the Cover
Delphi / Crystal Reports

By Dennis Butler
Crystal Reports is an impressive and powerful reporting tool that is under-
used in the Delphi community. From HTML exporting options to direct e-

mail connectivity, Crystal is a time-tested, robust reporting tool that is connect-
ed with a simple-to-use and complete component for Delphi. This article will
focus on obtaining the maximum benefit from Crystal, describing in detail the
benefits and disadvantages of incorporating it into Delphi applications.
Because we’re going to be looking at Crystal
from a Delphi perspective, this article won’t
introduce all the capabilities of Seagate’s report
writer. Instead, it will review the methods
required to obtain maximum flexibility from
the product using Delphi and the Crystal
environment together. This article assumes the
reader is familiar with creating Crystal reports.

Some History
Although Crystal is touted as the “best-
selling report tool,” is bundled with major
tools (e.g. Visual Basic), and has won many
industry awards, Delphi developers have
either a love or hate relationship with it.
Some love its flexibility, readily available
support, and wide range of features.
Because it’s widely used in the computing
industry, and Seagate regularly develops
new releases, using Crystal should be a
safe way to ensure your applications can
use newer technologies. Developers who
loath the product, however, point out the
historically poor Delphi support and the
moderate footprint it leaves in the form
of DLLs in your Windows system directory
and elsewhere.

I’ve used the product enough to appreciate
what it has to offer Delphi developers, how-
ever frustrating some things have been along
the way. Moving forward, Seagate has made a
concerted effort to reach the Delphi pro-
gramming community with improved func-
tionality and support.
Printing a Simple Report
The primary interface to Crystal from Delphi
is the TCrpe component, which is available
with the professional version of Crystal, and
from the Seagate Web site (http://www.
crystalinc.com). The Crystal component has
evolved quite a bit since the original version
for Delphi 1, so developers who haven’t
looked at the capabilities since then will want
to revisit it. Here’s a simple introduction.

To print an existing report using the TCrpe
component, drop the component onto
your Delphi form and use code similar to:

procedure TfrmPrintRpt.btnPrintClick(Sender:

TObject);

begin
with Crystal1 do begin
Destination := toPrinter;

ReportName :=

'C:\CRYSTAL\DATA\SIMPLE.RPT';

Execute;

end;
end;

We’ve used the basic properties of the com-
ponent to print the report. The Destination
property contains a list of several possible
destinations, which will be covered in detail
later. The ReportName property is simply the
physical location of the report. The Execute
method prints the report.

Simple, isn’t it? If only all applications were
this simple. However, in projects of any merit,
there will be quite a bit more code involved

http://www.crystalinc.com
http://www.crystalinc.com

On the Cover
than this; often the design requires complicated intervention to
produce the desired results. Our next step in examining the
component is to look at the Selection, Formula, and Sort proper-
ties of the component.

Selecting Reports to Print
In the previous example, the report and information in the
tables linked to that report were printed. To limit information
output by the component, we use the GroupSelectionFormula
and SelectionFormula properties. These properties are similar
to the TStringList type and hold the criteria by which the
report will be limited. The SelectionFormula limits what is out-
put on an individual record level, while the
GroupSelectionFormula limits what is output for an entire
group band in the report. Let’s look at an example:

with Crystal1 do begin
// Always clear SelectionFormula before every print.
SelectionFormula.Clear;

// Select active customers.
SelectionFormula.Add('{ Customer.Status } = "Active"');

// Select date range.
SelectionFormula.Add(

' and { Sales.Sale_Date } > Date(1997,12,31)');

GroupSelectionFormula.Clear;

// Determine groups to show.
GroupSelectionFormula.Add('Sum({ Sales.Amount },

{ Customer.Cust_Id }) >= 20000');

ReportName := 'C:\CRYSTAL\DATA\20KSALES.RPT';

Destination := toWindow;

Execute;

end;

This report has a simple master-detail relationship between
the Customer and Sales tables and has a group band on
CustId. The information shown in the report is a list of sales
for a particular customer. The SelectionFormula code is limit-
ing the output to active customers and sales that have
occurred in 1998. The GroupSelectionFormula is limiting the
output to show only customers who have total sales for 1998
greater than $20,000. Setting the Destination property to
toWindow shows the report in a preview mode.

Now we’re getting somewhere. In this example, it’s easy to see
how the report can be manipulated using the TCrpe component.
If we wanted, we could feed information in from Delphi con-
trols. However, there are important considerations to be made
when using the SelectionFormula property to select records.

When a Crystal report is run, a temporary table is created by
the report engine that is a composite table of all the tables in
the report. SelectionFormula limits the size of the Crystal
Report table that is created, and selects records from the table
to display. While a report is being generated, a dialog box will
appear on which you will see a status bar reading something
like the following:

of #### ##%

This is telling us the number of records that Crystal has
selected, how many records total have been processed into
7 October 1998 Delphi Informant
the temporary table, and what percentage of the process is
complete. Based on what fields are selected for use in the
selection formula, there can be massive performance differ-
ences, even with the same output. Let’s look at a two-table
example, where a Customer table has 800 records, and a
Sales table has 800,000 records (1,000 records for each
master record).

With these two tables linked correctly in Crystal (link com-
ing from Customer pointing to Sales), and having printed
the entire list of customers and sales, we will yield an
800,000-record temporary Crystal table that will take a few
minutes to generate. To see only one master record and its
1,000 detail records, we would set the selection formula to
{Customer.CustId}=#. This will result in a temporary
table of 1,000 records that is created almost instantaneously.
If we were to set {Sales.CustId}=#, it would process all
800,000 records, even though the output would again be
only the one master record and its 1,000 detail records. It’s
important to realize when running the reports that, whenev-
er possible, the primary linking and selection of records
should be from the master table.

Every time we run a report, we must remember that the
SelectionFormula may hold information from the last time a
report was run, so it’s safest to clear it before re-assigning values
to prevent the report from giving incorrect results. Note that
creating more than one SelectionFormula only requires that
some operator be used to connect them (i.e. and, or). When
this formula is evaluated by Crystal, it’s taken as an entire
expression, so the following code fragments are identical:

// Example 1.
with Crystal1.SelectionFormula do begin

Clear;

Add('{ Customer.Status } = "Active"');

Add(' and { Sales.Sale_Date } > Date(1997,12,31)');

end;

// Example 2.
with Crystal1.SelectionFormula do begin

Clear;

Add('{ Customer.Status } = "Active" and ' +

'{ Sales.Sale_Date } > Date(1997,12,31)');

end;

One other item to note about using the SelectionFormula
property is that it doesn’t replace a selection formula set
from within the report itself. Items added through the
TCrpe component work in addition to any selection crite-
ria already set for a record, or a group in the report
through the Crystal environment.

Formula and Sorting Options
The two other main properties for the TCrpe component
that affect the formatting of the report are the Formulas
and SortFields properties. The Formulas property lets the
programmer change the calculation or value of any existing
formula field within the specified report. The SortFields
property lets the programmer sort any or all tables in the
report in ascending or descending order. (Note: Both prop-

On the Cover
erties are declared as arrays of strings, not as a TStringList.)
Let’s look at an example:

with Crystal1 do begin
SelectionFormula.Clear;

// Clear the list by setting [0] item to blank.
SortFields[0] := '';

// Sort on CustName in descending order.
SortFields[0] := '-{ Customer.CustName }';

// Then sort sales fields in ascending order.
SortFields[1] := '+{ Sales.Amount }';

// Clear any old formulas.
Formulas[0] := '';

// Set report title to user-defined string from
// edit box edtTitle.
Formulas[0] := 'fmlaTitle="'+edtTitle.Text+'"';

ReportName := 'C:\CRYSTAL\DATA\SORTSALE.RPT';

Destination := toWindow;

Execute;

end;

As with the SelectionFormula and GroupSelectionFormula
properties, the SortFields and Formulas properties have equiv-
alents in the report itself. In this example, the report has a
formula in it named fmlaTitle. By setting the formula
through code, we change whatever it’s set to in the report to
our own value based on a value from an edit box. The
SortFields property simply lists the table and field by which
to sort, and prefixes it with the plus (+) or minus (-) charac-
ters to determine sort direction. Setting the value of the [0]
array item of either of these properties, it clears all previous
values entered.

In our simple example, we only put a string value in our
Crystal formula field. Crystal has its own programming
language with a wide variety of functionality. That topic is
outside the scope of this article, but programmers should
generally take advantage of the built-in functions that
Crystal provides for formula fields.

Destination
The Destination property is where the real benefits of
using Crystal are realized. By setting this to a valid value,
we can send the report to a variety of outputs. We have
already seen in the previous examples how to send reports
to the printer and to the screen for previewing. The fol-
lowing examples show all that can be accomplished.

Example 1: Export the report to a file. This requires a
few additional properties to be set, as shown in the follow-
ing code. Although it’s for Microsoft Excel 5.0, it works
for all file outputs, as long as the PrintFileType property is
set to the appropriate type:

with Crystal1 do begin
Destination := toFile;

PrintFileType := Excel5;

PrintFileName := 'C:\TEMP\MASTER1.XLS';

ReportName := 'C:\CRYSTAL\DATA\REPORT1.RPT';

Execute;

end;

Setting the destination of the component to toFile requires
the PrintFileType property to have a value specifying what
8 October 1998 Delphi Informant
format the report will be exported to. PrintFileType con-
tains many useful export options for the report, including
HTML, Word for Windows, several text formats, Excel or
Lotus 123, and many others.

This is a simple example of how easy it is to use the
full power of Crystal. Instead of having options limited
to output to screen, or output to printer (as with other
report writers), Crystal opens the door for user- or pro-
grammer-defined, ad hoc reporting. For example, the
user can print reports to Excel where the data can be
manipulated further. Given the market share that
Excel has in today’s computing industry, this is an
important capability.

Example 2: Send the report to e-mail via MAPI
(Microsoft Mail or cc:Mail v8) as an attachment in
HTML format. For example:

with Crystal1 do begin
Destination := toEmailViaMAPI;

PrintFileType := HTMLNetscape;

EmailToList := 'Dennis Butler';

EmailSubject := 'HTML Document';

EmailMessage := 'Attached is the HTML Document.';

ReportName := 'C:\CRYSTAL\DATA\REPORT1.RPT';

Execute;

end;

The only thing this requires is that a MAPI-compliant mail
service be set up for the target machine, and that the
EmailToList property contains a valid address from your
mail address book.

DataFiles and the OnLoadDataFiles Event
Crystal lets you link tables in a variety of ways in the
report environment, including specifying which direction
to link the tables, and in what order to load information
if there’s more than one detail table. Unfortunately, link-
ing to two detail tables, or trying to set multiple condi-
tions on linked tables, can lead to trouble in Crystal.
For example, if you have a master table linked to two
detail tables, one having two matching records and
one having three matching records, depending on how
the detail band is arranged, your output will sometimes
show three records for each detail table. Other times,
information for some tables can be removed entirely
based on selection criteria set for different tables.
Under certain conditions, Crystal will duplicate or
exclude information in the report in a multiple-detail
table situation.

The Open Sales and Send Schedule report is an example
(see Figure 1). This customer has ordered three items, two
of which are closed. This customer also has two scheduled
shipments. The desired report output should print all
non-closed items from the Sales table, and the overall
schedule. To do this, I created a Crystal report that links
CUSTOMER to ORDERED and SCHEDULE, with a
selection formula set to exclude any records from the

9 October 1998 Delphi Informant

On the Cover

Figure 1: Table contents for sample report.

Figure 2: Link configuration from within Crystal Reports.

Figure 3: Sample report output showing incorrect totals.

Figure 4: Sample report output showing correct totals.
ORDERED table that have a closed status. The linking
from Crystal is shown in Figure 2.

The report has one Customer group band, with a detail
band that contains two fields: the Amount field from the
ORDERED table, and the Amount field from the
SCHEDULE table. The expected output would be one
item in the ORDERED QTY column of the report, and
two items in the SENT QTY column of the report.
Instead, we get the output shown in Figure 3.

As you can see, we are completely missing the SENT QTY
information, even though there are two items in the data-
base. This kind of mistake can be hard to spot, especially
if there is one master with multiple-detail tables and selec-
tion restrictions in place. This problem is a result of the
nature of the composite temporary table that Crystal cre-
ates for each report. The selection formula took out the
two ORDERED QTY records that were closed, but those

two records held the information for the two missing
SENT QTY items. As a result, the output is missing
this information, although we didn’t want to exclude
those items from the report.

One solution is to select the option Look up all of one,

then all of the other from the Options button under the
Visual Linking Expert of Crystal Reports. Unfortunately,
the output for a report with multiple-detail tables will
appear as shown in Figure 4.

Here, we have the correct output, but it doesn’t look
entirely professional, because the detail items do not
share lines. In this situation, there are only a few items,
so it may not matter. But in reports with large amounts
of data, it can appear awkward when information from
different columns shows up on new lines of the report.
When the limitations of linking tables in Crystal become
evident, we can choose another option: create the answer
table ourselves. In a single-user environment, this table
can be linked directly into the report and created each
time the report is run from Delphi. However, in a multi-
user environment, this option may not be practical
because multiple users may try to recreate the temporary
table at the same time.

One way to solve this is to switch the name or location of
certain tables at run time through the OnLoadDataFiles
event. In the following example, the table created in Delphi
is named as the person’s login ID. This temporary table is
then connected to Crystal through the OnLoadDataFiles
event. We cycle through the DataFiles property to look for
the appropriate table and swap it. The structure of the tem-
porary table to which the report points in design mode and
the structure of the table, which is created through Delphi,
must be identical.

The two important parameters are Count and Cancel.
Count is the number of databases in the report, and

On the Cover
Cancel tells whether to cancel the report. This is useful if
this event cannot find the temporary table to which it is
trying to link:

procedure TfrmPrintRpt.Crystal1LoadDataFiles(

Sender: TObject; const Count: Integer;

var Cancel: Boolean);

var
iCtr : Integer;

sFileName : TFileName;

begin
// Set file name to user id. sDataPath is set by my
// application to be the location of the data.
sFileName := sDataPath + 'TMP' +

tblLogin.FieldByName('UserId').AsString + '.DB';

// Find the appropriate table and swap it.
for iCtr:=0 to Count-1 do

if ExtractFileName(

Crystal1.Datafiles[iCtr]) = 'SALES.DB' then
Crystal1.DataFiles[iCtr] := sFileName;

end;

This method is useful if what you are trying to accomplish is
beyond what Crystal allows you to do by default. This ability
allows practically any manipulation of data to be sent to a
report in the desired format without trying to get the tables
to link correctly from within Crystal.

Miscellaneous Tricks and Tips: Installation and Upgrading
With Crystal Reports 6.0, and the new version of the
component available to Delphi developers, we can be con-
fident that things will run as expected. I had the unfortu-
nate experience of trying to get Crystal Reports version
4.5 (32-bit) to work with Delphi through the old version
of the TCrpe component. After countless hours with
Seagate technical support, multiple patches from Seagate,
and increasingly frustrated users who simply wanted 32-
bit reporting, I was very close to abandoning Crystal for a
more programmer-friendly product.

Versions 5.0 and 6.0 of Crystal, as well as the new version of
the component, have proven to be a lot more reliable and
worthwhile. If you must venture into the pre-5.0 version
world of Crystal, however, be aware of a few things:

Version 4.5 (16- and 32-bit) requires patches from
Seagate to work. The DLLs from the installation disks
have memory problems and will cause GPFs or Access
Violations on your machine.
Version 4.5 (32-bit) initially had no Paradox table sup-
port when it was released. You can contact Seagate for the
missing DLL (P2BBDE.DLL), which you should put
into your Windows \System folder.
Version 4.5 or earlier will cause severe Access Violations
upon exiting your Delphi applications if you are using
BDE version 3.5 or later.

The good news for programmers who are planning to
upgrade from an earlier version of Crystal is that the
reports themselves are completely backward-compatible, so
10 October 1998 Delphi Informant
version 4.0 reports will run in the 6.0 environment.
However, it’s good practice to print all reports that have
been upgraded. I’ve found that some formatting is lost
when printing old reports in the new environment — for
example, previously underlined fields were no longer
underlined, and some amount fields that were set to hide
commas in the old version show commas in the new ver-
sion. It doesn’t seem to happen in all circumstances, so it’s
good practice to fully test the converted reports.

Divider Lines
One interesting trick I ran into evolved from a client request
regarding divider lines in a report. The client wanted to be
able to selectively turn on/off divider lines in the detail sec-
tions of certain reports. The easy way out would have been to
create two reports — one with divider lines and one without
— but I didn’t want to have to maintain two reports. Instead,
I found an alternative solution.

In the detail section, create a regular line that doesn’t have
any other items on the same report line. Create a formula
field named fmlaDivider without a value for its formula, and
place the field on the same line as the divider line we’ve
drawn. Shrink the size of the field to be as small as possible
and right-justify it. Next, make sure that the group section
containing the divider line has the setting Suppress Blank

Lines checked. This will take out the blank spaces normally
left by null fields.

From Delphi, pass a value to this formula based on the user
selection. If the user does not want a line, pass an empty
string. If the user does want a line, pass a single character
padded with spaces to the left of the character. If the formula
field is blank when the report is run, it will “suppress” the
line or page number on the same line as the null field and it
won’t appear. For example:

Formulas[0] := '';

// If checkbox is checked, then show divider line.
if chkUseDivider.Checked then

// fmlaDivider is the formula name in the report itself.
Formulas[0] := 'fmlaDivider=" X"';

else
Formulas[0] := 'fmlaDivider=""';

Execute;

Because the formula was left-justified when the value was
passed to the report, we won’t see it in the output, but the
line will appear. The line will disappear when the formula
has passed an empty value because of the Suppress Blank

Lines option.

Crosstab Reports
There are many situations where it makes sense to use the
Crystal Reports Crosstab report. It’s a non-standard report
that shows the value of one field as the rows, the value of
another field as the columns, and the resulting field — a
calculation of a field(s). The format shows data in an alter-
native way.

On the Cover
However, the Crosstab report from Crystal is very restrictive.
It allows very limited access to the fields in the crosstab itself,
and sorts the columns and rows in the default order for the
selected field. Fields can’t be added or removed from the
crosstab layout, except from the Crosstab Setup itself. I ran
into a problem creating a report that needed to have the col-
umn fields put in a different order than the Crystal alphabeti-
cal default. I wanted to display the value of one field, but sort
the columns by another. To do this, I again used the ability to
hide certain elements of a field.

The first step is to create a temporary table identical to the
crosstab table in the report, except the field used for the col-
umn should be comprised of several fields. This field was
made of a string concatenation of the sorting field, a large
number of spaces, and the field to display. By using this tem-
porary table in the report and right-justifying the field in the
crosstab, the sorting field isn’t visible because the field wasn’t
stretched far enough to show it.

For example, we have a table used by a grocery store for
inventory that contains three fields — Category, Date, and
Amount — from which to create a crosstab report. Some of
the categories for this table are Vegetables, Canned Goods,
Deli, and Anything Else. In a Crystal crosstab with the
Category set as the column, Date set as the row, and the
Amount field as summary, the result will be as follows:

Anything Else Canned Goods Deli Vegetables
1/1/97 $200 $100 $80 $50
2/1/97 ...

This is fine unless the user wants to re-arrange the order of
the columns. Crystal sets an alphabetical order for the
columns. To overcome this, we must create a temporary
table. The only thing we need to do is change the
Category items so they are prefixed by particular letters.
For example:

“A Vegetables”
“B Canned Goods”
“C Deli”
“D Anything Else”

Now our crosstab will look like this:

Vegetables Canned Goods Deli Anything Else
1/1/97 $50 $100 $80 $200
2/1/97 ...

Because we stretched the fields of the crosstab to fit the original
captions, the prefix letters won’t be viewed on the final report.

Changing Printers
In Crystal, there are three properties available to change the
printer. However, there is an additional public variable that also
needs to be modified. The PrinterName, PrinterDriver, and
PrinterPort properties need to be changed, as well as the public
11 October 1998 Delphi Informant
variable PrinterMode. Because PrinterMode doesn’t appear in
the Object Inspector, it can be frustrating to try to change the
printer at design time.

Sending Reports via VIM
With versions of Crystal later than version 5.0, support for
VIM has been removed. However, Lotus released cc:Mail v.8
in 1997, which was MAPI-compliant, so mail is still possible
through cc:Mail. That said, the TCrpe component still has a
setting for the Destination to be toEmailViaVIM. Using this
option assumes you are using an earlier version of Crystal,
and will produce a DLL version error if you try to use it with
Crystal Reports 5.0 or later.

Seagate has also removed export support for WordPerfect,
Word for DOS, and Quattro Pro. These are important con-
siderations to be made if you are upgrading mail systems or
upgrading an existing application that uses these options.

Reducing the Run-time Footprint
Distribution of Crystal leaves a sizable amount of files on
the target machine. The latest CRPE32.DLL report engine
itself weighs in at a hefty 3.5MB. However, some of this
overhead can be reduced by taking a few steps. You can use
the Report Distribution Expert within Crystal to see all
necessary DLLs for any specific report. This isn’t always the
best way to determine which DLLs are necessary, and you
may need to investigate further. Crystal segments export
DLLs and function calls from the report into different
DLLs, so if a new version of a report with new functionali-
ty was sent to a target machine, it may look for a DLL that
wasn’t originally installed.

The best way to approach which DLLs to select is to include
all of them, then decide which ones will never be used.
Following are the 32-bit DLLs distributed with Crystal:

P2*.DLL — Database DLL, depends on table format
used. Usually only one is necessary.
PG32.DLL — Required for any graphing in reports.

Destination options:
U2DDISK.DLL — Disk file destination
U2DMAPI.DLL — MAPI format (Microsoft Mail,
Microsoft Exchange, cc:Mail v8)
U2DPOST.DLL — Microsoft Exchange Public Folders
(older version of Crystal)
U2DVIM.DLL — VIM format (cc:Mail, Lotus Notes,
WPOffice, etc.)
U2DNOTES.DLL — Lotus Notes

Export options:
U2FCR.DLL — Crystal Reports, 16-bit format
U2FDIF.DLL — DIF format
U2FHTML.DLL — HTML format
U2FODBC.DLL — ODBC data source
U2FREC.DLL — Record format
U2FRTF.DLL — Rich Text Format
U2FSEPV.DLL — Comma Separated Values format

On the Cover
U2FTEXT.DLL — Text format
U2FWKS.DLL — Lotus 123 format
U2FWORDW.DLL — Microsoft Word for Windows for-
mat

U2FXLS.DLL — Microsoft Excel format (older version
of Crystal)
U2FDOC.DLL — Word for DOS and WordPerfect
format
U2FQP.DLL — Quattro Pro

Any of these DLLs can be excluded if they aren’t used in an
application. DLLs starting with “U2L” are called User
Function Libraries. These DLLs are used for Crystal formulas.
In addition to the user function libraries that come standard
with Crystal, there are many additional DLLs available from
Seagate’s Web site. You can add quite a bit of new functionality
to your reports by installing them. Programmers can also create
their own DLLs to add new functionality to their reports. This
extensibility of Crystal is very useful when creating new func-
tionality that can be shared among many different reports.

Conclusion
Overall, Crystal Reports 6.0 gives developers a wide range of
options and functionality. With its large user base, Crystal is
constantly being improved and patches or updates are, for
the most part, available in a timely manner. There is a large
technical support staff at Seagate, with representatives who
know Delphi and who use the TCrpe component, so it’s
much easier to get useful information quickly than in previ-
ous years when no Delphi support was available.

With its separate report development environment, creating
reports doesn’t have to be done by the Delphi programmer
alone, but instead can be opened to anyone who is familiar with
Crystal. Its wide array of export functionality provides a variety
of useful ways to format and output your reports. The TCrpe
component provides all the functionality we need, and there is
rarely a situation when we need to delve into the Crystal API.

Although Crystal can sometimes be frustrating when it behaves
in what appears to be an illogical manner, patience and work-
arounds make using it a worthwhile effort, given all the prod-
uct’s strengths. Although past versions were only partially func-
tional with Delphi and created many problems, Seagate seems
to have made a concerted effort to improve both the support
and technical aspects of using Crystal Reports with Delphi. As
the product continues forward, we can expect to see an even
wider range of possibilities for programmers. ∆

Dennis Butler is a Senior Application Developer for Apogee Information Systems,
an INPRISE Premier Partner specializing in multi-tier Delphi and JBuilder solu-
tions. Mr Butler delivered several presentations at the original Borland Canada
Conference in 1997. He has been designing and developing Delphi applications
since the first release of the product.
12 October 1998 Delphi Informant

13 October 1998 Delphi Informant

Reports in DLLs
Report Distribution Made Simple

Dynamic Delphi
Delphi / DLLs / Reports / Distribution

By Neville Kelly
The largest class of programs developed using Delphi are data programs, i.e.
programs that maintain data stored in a database and extract information

from the database by means of reports. Usually, the data maintenance part of
these programs is relatively stable, but developers frequently need to add new
reports or change existing reports to meet client requirements. If the program is
developed as a single executable file, then the entire executable file must be
distributed to clients to provide them with the new or changed reports. As a
result, the file distributed is larger than necessary.
This article describes a technique to avoid
the distribution problem. The reporting part
of the program is distributed as a dynamic
link library (DLL). Thus, only the DLL has
to be distributed when reporting require-
ments change. The technique involves:

report and parameter definitions stored in
database tables,
a report launcher form that is part of the
main executable file,
the report DLL containing the reporting
code, and
a separate report development and testing
application.

Additionally, we’ll describe simple implemen-
tations of two reporting “bells and whistles:”

providing users with an online sample for
each report, and
implementing user report access control.

This article covers this technique as it relates
to QuickReport, simply because all Delphi
users have a copy of it. However, I first devel-
oped this technique for use with
ReportPrinter Pro.

Report and Parameter Definitions
When designing the report and parameter
data structures, we need to provide a means
of displaying to users available reports and
their parameters in a manner similar to a
reporting menu. Also, we must provide
appropriate prompts, hints, and parameter
value control for each report and parameter.
To store the report and parameter defini-
tions, we could use .INI files, the registry,
or a structured storage file. But, as we are
dealing with a database program and have
already incurred the overhead of a database
management system, it’s natural to use data-
base tables.

The report and parameter table definitions
are shown in Figure 1. RptId is the primary
index of the report table, and the ParmRptId
and ParmSeqNbr columns form the parame-
ter table primary index. By linking RptId to
ParmRptId, we can create a master-detail
relationship where a report may have many
parameters that will be in ParmSeqNbr order.

Report Launch Form
The Report Launch Form described in
this article is a stand-alone program
(ReportsTest.exe). However, in practice, it
would be part of the main data maintenance
program, and would be shown when the user
selected a reporting option from the main
menu. The form enables the user to select a
report, enter parameters for the report, and
run it. It provides the link between the data

Report Table

Field Name Description Data Type Required Usage

RptId Report Identifier Alpha Yes Short name used to identify the report
RptName Report Name Alpha Yes Long descriptive name for the report
EdtRptCtxt Help Context Long No Help topic context identifier for the report
RptAccessLevel Report Access Level Long No A number appropriate to the report access level

(the user must have an access level equal to or
higher to run the report)

Parameter Table

Column Description Data Type Required Purpose

ParmRptId Report Identifier Alpha Yes Links a set of parameter records to a report
ParmSeqNbr Parameter Sequence Number Short Yes Controls the order in which the parameters

are displayed
ParmName Parameter Name (Developer) Alpha Yes Parameter name used to insert and extract

a parameter value from the parameter list
ParmText Parameter Name (User) Alpha Yes Parameter name displayed to the user
ParmValue Parameter Value Alpha No Stores the parameter value
ParmMask Parameter Mask Alpha No Provides a standard Delphi field edit mask

for the parameter at run time
ParmReqd Parameter Required Logical No Controls whether the parameter is

required or optional at run time
ParmHint Parameter Hint Alpha No Provides hint to advise the user about

parameter values

Figure 1: The report and parameter table definitions.

Figure 2: The Report Launch Form at run time. Figure 3: The Report Launch Form at design time.

Dynamic Delphi
maintenance program and the report DLL. Figure 2 shows
the form at run time, and Figure 3 shows the form at design
time. The data access components on the form are:

a Table component, tblReport, set to the report table;
another Table, tblParm, set to the parameter table; and
two DataSource components, dtsReport and dtsParm, con-
nected to tblReport and tblParm, respectively.

The tables are connected in the desired master-detail arrange-
ment by setting tblParm’s MasterSource property to tblReport,
14 October 1998 Delphi Informant
and its MasterField property to RptId. Additionally, we create
persistent fields for all columns of both tables. In the Report

Selection Block, there are four main controls:
an Edit component, edtRptId, enabling the user to locate
a report;
a SpeedButton component, btnEdtRptId, located adja-
cent to edtRptId, enabling the user to start a new
report locate process;
a DBGrid, grdReport, showing the available reports; and
a DBText, lblRptName, showing the current/selected report.

Dynamic Delphi
To set up the block’s data controls, we set both grdReport’s
and lblRptName’s DataSource property to dtsReport, and
lblRptName’s DataField property to RptName. The
edtRptId.Text property and the cursor for tblReport data set
are linked by code in the edtRptIdChange procedure:

tblReport.Locate('RptId', edtRptid.Text,

[loPartialKey, loCaseInsensitive]);

This has the effect, as the user types into edtRptId, of moving
the data set cursor (and hence the grid row pointer) to the
record most closely matching edtRptId.Text. Additionally, we
“auto fill” the edtRptId.Text property with the value of the
current tblReportRptId field by using code in the
dtsReportDataChange procedure:

edtRptId.Text := tblReportRptId.Value;

Thus, grdReport’s row pointer indicates the current report,
edtRptId shows the current report identifier, and lblRptName
shows its name (“grayed-out” to indicate that it is not select-
ed). Users can type a new report identifier at any time by
pressing the speed button, btnEdtRptId. The button’s OnClick
event simply clears edtRptId.Text and resets the state of those
controls that may have been set previously.

If we create a Help file with a topic for each report, we can pro-
vide the user with an online sample of the current report. The
sample Help topics in the file I’ve provided with the demonstra-
tion program (see end of article for download details) are quite
basic and could, for example, be expanded by:

giving detailed explanations of the effect of particular
parameter values, and
describing when (and when not) to run a report.

We associate the current report with the appropriate Help
context identifier, and thus display the correct Help topic
with code in the btnRptDescClick procedure:

Application.HelpContext(tblReportRptHelpCtxt.Value);

The user may select the current report by pressing R
while either edtRptId or grdReport has input focus. We do this
by pointing grdReport’s OnKeyDown event handler to
edtRptId ’s OnKeyDown event procedure. The code is shown
in the edtRptIdKeyDown procedure.

If the key triggering the event is R, this procedure does
several things:

lblRptName is enabled to indicate the report has been
selected.
UserAccessLevel is checked to see if it’s sufficient to run the
report. If it’s not, the Run Report button is disabled and an
error dialog box is displayed. Normally, the UserAccessLevel
would be associated with the user at login, as set by the system
administrator; however, in this demonstration program, the
default UserAccessLevel is 5. You can override this by passing
a parameter at run time (within Delphi, Run | Parameters).
15 October 1998 Delphi Informant
If the report has parameters, we activate controls in the
Report Parameter Entry Block. Specifically, we: 1) display
the hint for the first parameter, 2) show the parameter
grid grdParm, and 3) move focus to edtParmValue.

If the report has no parameters, we simply move focus to the
Run Report button.

The main controls in the Report Parameter Entry Block are:
a DBControlGrid component, grdParm, connected to
dtsParm; and
a Panel, pnlParmHint, used to display ParmHint contents.

On grdParm, we have:
a DBEdit, edtParmValue, connected to ParmValue; and
a DBText, lblParmText, connected to ParmText.

To control parameter values, we may wish to alter the
tblParmParmValue.EditMask and tblParmParmValue.Required
properties at run time. By providing an EditMask, we ensure
the user enters only valid report parameter values. By con-
trolling the Required property, we ensure all essential para-
meters are entered, while still enabling optional parameters
to be left blank. The following tblParmAfterScroll procedure
code sets these properties for us:

tblParmParmValue.EditMask := tblParmParmMask.Value;

tblParmParmValue.Required := tblParmParmReqd.Value;

When the user advances from one parameter to the next,
we need to invoke checking for the Required property. We
cannot use EDBEngineError to process violation of the
Required property because the field is defined as “not
required” in the database definition (this allows us to have
optional parameters). Instead, we must use the more gener-
al EDatabaseError. Where the user attempts to violate the
Required property, we can customize the error message by
checking the default error text and providing our own
error text. The default error text is used for other
EDatabaseErrors. This is shown in the ProcError procedure,
which may be called from edtParmValueExit or
grpParmKeyDown procedures:

procedure TfmLauncher.ProcError(E: EDatabaseError);

begin
if Pos('must have a value', E.Message) > 0 then

MessageDlg('This parameter is required, ' +

'you must enter a value', mtError, [mbOk,mbHelp], 10)

else MessageDlg(E.Message, mtError, [mbOk], 0);

end;

The ExecReport procedure runs the report (see Figure 4). But
before we call it, we must store the report parameter values in
the TStringList (ParmsList) passed as a procedure parameter.
We do this (see the btnRunClick procedure) by looping
through the Parm table and adding a Name=Value pair to
ParmsList for each record with:

ParmsList.Add(tblParmParmName.Value + '=' +

tblParmParmValue.Value);

Dynamic Delphi

// Uses RptId to create the appropriate report form.
// Processes ParmsList to resolve parameter values and
// allocate them to the appropriate query or table
// parameters. Runs the report and frees report form
// resource.
procedure ExecReport(RptId: string;
ParmsList: TStringList);

begin
fmDriver := TfmDriver.Create(Application);

try
if RptId = 'CustList' then begin
ListForm := TListForm.Create(Application);

try
// This report has no parameters.
ListForm.QuickRep.Preview;

finally
ListForm.Free;

end;
end;
if RptId = 'CustListFltr' then begin
ListForm := TListForm.Create(Application);

try
// Use report parameters to build table filter
// string.
with ListForm.QuickRep do begin
DataSet.Filtered := True;

DataSet.Filter := 'Custno > ' +

ParmsList.Values['CustNbrFrom'] +

'and CustNo < ' +

ParmsList.Values['CustNbrTo'];

Preview;

end;
finally
ListForm.Free;

end;
end;

if RptId = 'GrpCustList' then begin
GrpListForm := TGrpListForm.Create(Application);

try
// Use report parameter to build query parameter
// value.
with fmDriver.qryCustomer do begin
Close;

ParamByName('pCoChar').AsString :=

ParmsList.Values['CustName'] + '%';

Open;

end;
GrpListForm.QuickRep.Preview;

finally
GrpListForm.Free;

end;
end;
if RptId = 'ManyGrpList' then begin
ManyGrpForm := TManyGrpForm.Create(Application);

try
with fmDriver.RepQuery do begin
Close;

ParamByName('pCustNo').AsInteger :=

StrToInt(ParmsList.Values['CustNo']);

Open;

end;
ManyGrpForm.QuickRep.Preview;

finally
ManyGrpForm.Free;

end;
end;

finally
fmDriver.Free;

end;
end;

Figure 4: The ExecReport procedure.

Figure 5: The user interface.
Thus, ParmsList for the CustListFltr report might contain:

CustNbrFrom=2000

CustNbrTo=3000

Note that ExecReport is contained in the DLL Reports.dll.
Thus, it’s defined as:

procedure ExecReport(Rptid: string;
ParmsList: TStringList);

external 'Reports' name 'ExecReport';

Report Development and Test Application
Next, we’ll look at RptTestDev, the companion application
used to develop and test reports. We need this application
because we want to avoid the tedium of having to compile
the DLL each time we make a change to one of our
reports while we are in the development and test phase.

First, let’s look at the user interface shown in Figure 5.
The important thing to note about this unit is that the
TfmSelRun.btnRunClick procedure code is the same as that
for TfmLauncher.btnRunClick. That is, the ReportsTest and
RptTestDev applications use the same code to run reports.

Next, we’ll focus our attention on the Driver unit; it con-
tains the definition for the ExecReport procedure. With
16 October 1998 Delphi Informant
ExecReport, we identify the report, resolve each parameter
value, and allocate it to the appropriate report query or
table parameter or use it to control report processing in
some way. We then run the report. In this article, we’ve
simply taken some of the reports supplied as demonstra-
tion reports with QuickReport and modified them slightly
to illustrate various methods of using parameters with
reports. Thus, the reports are quite simple, but are ade-
quate to demonstrate the potential of the technique.
Because we need to make it visible to the outside world,

Dynamic Delphi
we add to the interface part of the Driver unit the export
directive, and ExecReport is declared as:

procedure ExecReport(RptId: string;
ParmsList: TStringList); export;

The basic structure of ExecReport is:

begin
fmDriver := TfmDriver.Create(Application);

try
// A series of statements for each report to resolve
// parameters and run the report.

finally
fmDriver.Free;

end;
end;

Because we create the form fmDriver, we must protect it
within a try..finally block so that the form resources are freed
if a report fails in some way.

Next, we’ll look at a simple report (RptId = CustList) with no
parameters to reveal the code needed to run a report:

if RptId = 'CustList' then begin
ListForm := TListForm.Create(Application);

try
// This report has no parameters.
ListForm.QuickRep.Preview;

finally
ListForm.Free;

end;
end;

As you can see, we simply create the report form, run the
report, then free the form resources. Again, we need to
ensure resources are freed by using a try..finally block. We
can extend this into a slightly more complex report (RptId
= CustListFltr) when we use the report parameters to build
a string for the Filter property:

if RptId = 'CustListFltr' then begin
ListForm := TListForm.Create(Application);

try
// Use report parameters to build table filter string.
with ListForm.QuickRep do begin
DataSet.Filtered := True;

DataSet.Filter := 'Custno > ' +

ParmsList.Values['CustNbrFrom']

+ 'and CustNo < ' + ParmsList.Values['CustNbrTo'];

Preview;

end;
finally
ListForm.Free;

end;
end;

Note that CustListFltr actually uses the same report form
as CustList; all we have done is set up a table filter. Note
also that we get the value part of a Name=Value pair, i.e.
we get the parameter value from the string list
ParmsList with:

ParmsList.Values['Name']
17 October 1998 Delphi Informant
For anything more sophisticated than a filter, we need to set
the report table or query properties. Thus, we need to place
the QuickReport.DataSet on the fmDriver form rather than
on the report form. This is the case with the next report
(RptId = GrpCustList). This report is a demonstration report,
GrpListForm, with the Query component, qryCustomer, used
as the QuickReport.DataSet instead of the Table. We set the
qryCustomer.SQL property to:

SELECT * FROM Customer

WHERE Company LIKE :pCoChar

ORDER BY Company

and with the code:

if RptId = 'GrpCustList' then begin
GrpListForm := TGrpListForm.Create(Application);

try
// Use report parameter to build query parameter value.
with fmDriver.qryCustomer do begin
Close;

ParamByName('pCoChar').AsString :=

ParmsList.Values['CustName'] + '%';

Open;

end;
GrpListForm.QuickRep.Preview;

finally
GrpListForm.Free;

end;
end;

we restrict rows returned from the database to those where
Company begins with the value of the CustName parameter.

In the final report (RptId = ManyGrpList), we’ve moved
the Query component, RepQuery, from the report form
to fmDriver by using cut and paste. We also need to set the
various TQRDBText DataSet properties appropriately. In
resolving the parameter, we need to do some tink-
ering with the parameter value to convert it to the correct
data type:

if RptId = 'ManyGrpList' then begin
ManyGrpForm := TManyGrpForm.Create(Application);

try
with fmDriver.RepQuery do begin
Close;

ParamByName('pCustNo').AsInteger :=

StrToInt(ParmsList.Values['CustNo']);

Open;

end;
ManyGrpForm.QuickRep.Preview;

finally
ManyGrpForm.Free;

end;
end;

We have covered all the ground needed to develop and test a
new report. In summary, the steps are:
1) Start Delphi and open the RptTestDev project.
2) Add a new form.
3) Place a QuickRep component on the form; add Query

and/or Table and appropriate QuickReport compo-
nents to develop the report in the normal manner.

Dynamic Delphi
4) Edit the ExecReport procedure by adding code to identify
the report, resolve parameters, and run the report.

5) Add the report unit name to the uses statement in the
implementation part of the Driver unit (File | Use Unit).

6) Run RptTestDev. If you have not tested the report
before, you will need to enter values into the report and
parameter fields. Use the field information in Figure 1
to determine what values to place in each field.

In most cases, you will need to repeat steps 4, 5, and 6 to
refine the report.

The Reports DLL
In the process of developing the reports in RptTestDev, we’ve
done most of the work needed for the report DLL. The Driver
unit contains the ExecReport procedure, and each report unit
contains the code appropriate to the report. The code for the
Reports DLL (for the demonstration reports) is simply:

library Reports;

uses
Driver in 'Driver.pas' { fmDriver },
List in 'List.pas' { ListForm },
Grplist in 'Grplist.pas' { GrpListForm },
Manygrp in 'Manygrp.pas' { ManyGrpForm };

{$R *.RES}

exports ExecReport name 'ExecReport';

begin
end.

The steps for developing and distributing new or changed
reports are:
1) Develop and test the report using RptTestDev.
2) Open the Reports project.
3) Add the new report unit (Project | Add to Project).
4) Compile the project (Project | Compile).
5) Distribute the Reports.dll file created by the compile step.

Conclusion
Using a DLL for reporting code makes the job of distributing
new or changed reports simpler. As described in this article,
you can control parameter values and report access. Also, you
can provide the user with parameter hints and sample reports.
It’s a simple technique that should reduce the size of the file
needed to distribute new or changed reports. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\OCT\DI9810NK.

Neville Kelly works at Charles Sturt University in Australia as a
Programmer/Analyst using an Oracle database and tools. To convince him-
self that working life does not have to be that hard, he also develops com-
mercial applications from home using Delphi. He may be reached by e-mail
at nkelly@csu.edu.au.
18 October 1998 Delphi Informant

19 October 1998 Delphi Informant

Topological Sorting
Ensuring Things Occur in an Orderly Fashion

Algorithms
Delphi / Topological Sorting

By Rod Stephens

Figure 1: This
a prerequisite
Many complex projects are made up of a group of interrelated tasks. Some
of the tasks are prerequisites for others, but many are completely un-

related. An obvious example is a college course schedule. Math 100 and Math
110 might be prerequisites for Math 120, but you might be able to take Math
100 and Math 110 in either order, or even concurrently.
Another example is building construction.
The framing must be finished before the
main electrical, plumbing, and roofing work
can start, but those three tasks can be per-
formed in any order.

Software development can also involve
large sets of tasks that are related in com-
plex ways. To properly build one routine,
you may need the output from another. To
perform subsystem tests, you may need to
feed outputs from one procedure into
another, and then feed the results into a
third to see that the results make sense. In
this case, the first and third procedures
must be written before you can properly
test the second.
 data structure represents the tasks for which A is
.

Orderings like these that specify some, but
not all, of the relationships among a group of
objects are called partial orderings. Extending
a partial ordering to produce a full ordering
is called topological sorting.

Let A < B mean task A must be performed
before task B. Then, topological sorting is
possible if the relationships among the tasks
meet three criteria:
1) Transitivity: For all A, B, and C, if A < B

and B < C, then A < C.
2) Asymmetry: For all A and B, if A < B,

then B < A is False.
3) Irreflexivity: For all A, A < A is False.

Most real-world examples, like the course pre-
requisites and construction examples described
earlier, obey these rules. However, an example
can cause trouble when the relationships are
over-specified. For example, suppose Math 100
is required for Math 120; Math 120 is required
for Math 10; and Math 10 is required for
Math 100. Then, using transitivity, Math 100
< Math 120 and Math 120 < Math 10 implies
that Math 100 < Math 10. Combining that
result with the fact that Math 10 < Math 100
gives Math 100 < Math 100, which violates
irreflexivity. In this example, it’s fairly obvious
that the courses can’t be ordered properly. In a
more complicated problem, such as testing a
large software project, it may not be as obvious
whether there are mutually dependent tasks.

Figure 2: The Ready list contains tasks with no prerequisites.
NotReady contains all other tasks.

Algorithms

Figure 3: After removing task A, the lists shown in Figure 2 are
ready to output the next task.
A Simple Algorithm

There is a very simple method for extending a partial ordering
to a complete ordering:
1) Look through the list of dependencies to find a task

that has no prerequisites. If there is no such task, the
tasks are mutually dependent and can’t be ordered.

2) Output that task.
3) Look through the list of dependencies and remove any

that have that task on the left. For example, if you just
output task A, remove A < B for all B.

4) Repeat step 1 until the dependency list is empty.

For small problems, this algorithm is fine. For large prob-
lems, however, it’s unnecessarily slow. Suppose there are T
tasks and D dependencies. This method repeats steps 1
through 4 a total of T times — once for each task. Steps 1
and 3 take on the order of D steps each. The total time
required by this method is on the order of T * D. A more
elaborate data structure allows a program to perform topo-
logical sorting in the order of T + D time.

A Faster Algorithm
The problem with the simple algorithm is that it examines
every dependency in steps 1 and 3, even if a dependency can’t
possibly be useful. For example, suppose in step 2 that the
algorithm outputs task A. In step 3, it must examine all the
dependencies, including those like B < C and F < Q, even
though task A is not involved in them. The new data struc-
ture allows the program to examine only the dependencies
that need to be changed because task A was output in step 2.

For each task, create a record that includes the task’s name,
the number of tasks it has as prerequisites, and a linked list of
pointers to the tasks for which it’s a prerequisite. For example,
suppose task A has no prerequisites. Suppose also that task A
is a prerequisite for three other tasks: A < B, A < C, and A <
G. Then, the data structure representing task A would look
like the diagram shown in Figure 1.

After you have built data structures to represent the tasks,
place them in two doubly-linked lists. The first list, Ready,
contains tasks that have no prerequisites. These are tasks that
20 October 1998 Delphi Informant
can be output immediately. The second list, NotReady, con-
tains all the other tasks. These lists are shown in Figure 2.

The new algorithm follows these steps:
1) Remove the first task from the Ready list.
2) Output that task.
3) Look through this task’s linked list of pointers to dependent

tasks. For each of those tasks:
a) Reduce the dependent’s prerequisite count.
b) If the prerequisite count is zero, remove the task

from the NotReady list and add it to the Ready list.
4) Repeat from step 1 until the Ready list is empty.

For example, suppose that the program reaches the point
shown in Figures 1 and 2. In step 1, it removes task A from
the top of the Ready list and outputs it.
The program then searches task A’s list of dependents.
Figure 1 shows that these include tasks B, C, and G.
The program decrements the prerequisite count for
each of these tasks, and they become 1, 0, and 3, respec-
tively. At this point, the count for task C becomes 0,
so the program removes that task from the NotReady
list and adds it to the Ready list. Removing the task is
easy because the NotReady list is a doubly-linked list,
and it’s always easy to remove items from a doubly-
linked list. (For more information on linked lists, see
Rod Stephens’ article “Linked Lists” in the May 1998
Delphi Informant.)

Figure 3 shows the Ready and NotReady lists at this point.
The program is again ready to output the next item. If
there are still tasks in the NotReady list when the program
empties the Ready list, those tasks are mutually dependent
and cannot be properly ordered.

Delphi Code
The Delphi source code that performs topological sorting is
shown in Listing One, beginning on page 21. The LoadData
procedure reads the dependencies from the Memo control,

Figure 4: The example program, TopoSort, extending a partial
ordering.

Algorithms
memInputs. The procedure OrderData uses the data structure
created by LoadData to extend the ordering and display the
results in the Memo control, memOutputs. Both of these pro-
cedures use the procedure MoveToReady to move task records
from the Ready list to the NotReady list.

The example program, TopoSort, uses these routines to perform
topological sorting (see Figure 4). If the tasks can’t be ordered,
the program lists the tasks that are mutually dependent.

Conclusion
Using the example program TopoSort, you can arrange your
course schedule, plan your home construction, and schedule
module testing for your biggest software projects. Perhaps
equally important, you can determine when a set of tasks is
mutually dependent. Then, if someone tells you to perform a
group of tasks that can’t be properly ordered, you can say with
confidence that what they ask is impossible. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\OCT\DI9810RS.

Rod Stephens is the author of several books, including Custom Controls Library
[1998], Visual Basic Algorithms [1998], and Visual Basic Graphics
Programming [1997], all from John Wiley & Sons. He also writes algorithm
columns in Visual Basic Developer and Microsoft Office & Visual Basic for
Applications Developer. He can be reached at RodStephens@vb-helper.com,
or see what else he’s up to at http://www.vb-helper.com.
Begin Listing One — Topological Sorting
type

DependentPtr = ^Dependent;

ItemPtr = ^Item;

// A record to hold a pointer to a dependent item.
Dependent = record
DependentItem : ItemPtr; // The dependent item.
NextDependent : DependentPtr; // Next dependent item.

end;

// A record to hold an item's dependencies.
21 October 1998 Delphi Informant
Item = record
ItemValue : string[10]; // The item's name.
NumBefore : Integer; // # items before.
NextItem : ItemPtr; // Next item in list.
PrevItem : ItemPtr; // Previous item.
FirstDependent : DependentPtr; // First item after.

end;

var
// Sentinels for Ready and NotReady lists.
NotReadyTop, NotReadyBottom : Item;

// Load the input data from the memInputs Memo control.
procedure TTopoSortForm.LoadData;

var
i, p : Integer;

the_line, dep_name, pre_name : string;
itm, dep_item, pre_item : ItemPtr;

new_dep : DependentPtr;

begin
// Initialize the doubly-linked lists.
NotReadyTop.NextItem := @NotReadyBottom;

NotReadyTop.PrevItem := nil;
NotReadyBottom.PrevItem := @NotReadyTop;

NotReadyBottom.NextItem := nil;
NotReadyBottom.ItemValue := #255; // A big value.

ReadyTop.NextItem := @ReadyBottom;

ReadyTop.PrevItem := nil;
ReadyBottom.PrevItem := @ReadyTop;

ReadyBottom.NextItem := nil;
ReadyBottom.ItemValue := #255;

// Get the input data. Load all the items into
// the NotReady list.
for i := 0 to memInputs.Lines.Count - 1 do begin
// Parse this line.
the_line := Trim(memInputs.Lines[i]);

if (the_line = '') then
Continue;

p := Pos(' ', the_line);

pre_name := Trim(Copy(the_line, 1, p - 1));

dep_name := Trim(Copy(the_line, p + 2,

Length(the_line)));

// Find the items.
pre_item := FindItem(pre_name);

dep_item := FindItem(dep_name);

// Add dep_item to pre_item's dependent list.
// pre_item < dep_item.
GetMem(new_dep, SizeOf(Dependent));

new_dep^.DependentItem := dep_item;

new_dep^.NextDependent := pre_item^.FirstDependent;

pre_item^.FirstDependent := new_dep;

dep_item.NumBefore := dep_item.NumBefore + 1;

end;

// Move items with no dependencies into the Ready list.
itm := NotReadyTop.NextItem;

while (itm <> @NotReadyBottom) do begin
if (itm.NumBefore > 0) then begin
// Leave this item in the NotReady list.
// Prepare to examine the next item.
itm := itm^.NextItem;

end
else begin
// This item is ready for output.
// Move it to the Ready list.
itm := MoveToReady(itm);

end;
end; // End while (itm <> @NotReadyBottom) loop.

end;

// Find a complete ordering and display it in memOutputs.
procedure TTopoSortForm.OrderData;

var

http://www.vb-helper.com

2

Algorithms
itm, dep_item : ItemPtr;

dep : DependentPtr;

begin
// While there are items in the Ready list, output one.
while (ReadyTop.NextItem <> @ReadyBottom) do begin
// Remove the first item from the Ready list.
itm := ReadyTop.NextItem;

ReadyTop.NextItem := itm^.NextItem;

ReadyTop.NextItem^.PrevItem := @ReadyTop;

// Add the item to the output.
memOutputs.Lines.Add(itm^.ItemValue);

// Decrement NumBefore for all items that are
// dependent on this one.
dep := itm^.FirstDependent;

while (dep <> nil) do begin
dep_item := dep^.DependentItem;

dep_item^.NumBefore := dep_item^.NumBefore - 1;

if (dep_item^.NumBefore < 1) then begin
// This item has no more dependents.
// Move it to the Ready list.
MoveToReady(dep_item);

end;

// Free this Dependent record.
itm^.FirstDependent := dep^.NextDependent;

FreeMem(dep);

// Go to itm's next Dependent record.
dep := itm^.FirstDependent;

end; // End while (dep <> nil) loop.
end; // End while there are items in the Ready list.

// If there are still items in the NotReady list, they
// cannot be ordered.
if (NotReadyTop.NextItem <> @NotReadyBottom) then begin

memOutputs.Lines.Add('');

memOutputs.Lines.Add('Mutually dependent:');

while (NotReadyTop.NextItem <> @NotReadyBottom) do begin
// Remove the first item from the NotReady list.
itm := NotReadyTop.NextItem;

NotReadyTop.NextItem := itm^.NextItem;

// Add the item to the output.
memOutputs.Lines.Add(itm^.ItemValue);

// Remove the dependents for itm.
dep := itm^.FirstDependent;

while (dep <> nil) do begin
// Free this Dependent record.
itm^.FirstDependent := dep^.NextDependent;

FreeMem(dep);

// Go to itm's next Dependent record.
dep := itm^.FirstDependent;

end;
end; // End while NotReady list is not empty.

end; // End if there are items in the NotReady list.
end;

// Move the indicated item to the Ready list. Leave itm
// pointing to the next item in the original list.
function TTopoSortForm.MoveToReady(itm: ItemPtr) : ItemPtr;

var
after_me, before_me : ItemPtr;

begin
// This item is ready for output.
after_me := itm^.PrevItem;

before_me := itm^.NextItem;

// Remove itm from the NotReady list.
after_me^.NextItem := before_me;

before_me^.PrevItem := after_me;

// Add itm to the Ready list.
itm^.PrevItem := @ReadyTop;
2 October 1998 Delphi Informant
itm^.NextItem := ReadyTop.NextItem;

itm^.NextItem^.PrevItem := itm;

ReadyTop.NextItem := itm;

// Return the item after itm in its original list.
Result := before_me;

end;

End Listing One

23 October 1998 Delphi Informant

Writing to the NT Event Log
NT Event Management Made Easy

Greater Delphi
Delphi 2, 3, 4 / Windows NT

By Ted Houts
Often in a Windows NT server environment, system administrators are baf-
fled by proprietary, in-house application initialization files and error logs.

By now, most programmers should be using the well-published and document-
ed registry API to localize initialization parameters. However, while a global
source for NT error logging exists, it’s often left unused. Many applications will
log messages to a text file, and others may log to a database table, so there is
usually no central and consistent method to view and maintain all in-house and
third-party system application problems. A typical programmer’s implementa-
tion of including a menu item to open the application’s local log file will not
work when implementing a Windows NT service, as most services have no GUI
for the user.
NT has had a built-in solution all along. Use
of the NT Event Log can consolidate, filter,
and group all error messaging in one loca-
tion, which will reduce training, documenta-
tion, and the troubleshooting time of your
server applications. Use of NT error logging
adds even more value by timestamping the
events as they come in, and the log file data
can be remotely accessed over a network.

NT has a set of APIs that allow you to pro-
grammatically write, read, clear, backup, and
respond to changes in the NT Event Log.
Unfortunately, you won’t find a lot of technical
information available to implement NT event
logging, especially via Delphi. In fact, Delphi 3
is missing some pieces to do it entirely.
Nonetheless, this article will describe the meth-
ods to write professional style events to the NT
Event Log. (Note: Event logging is an NT fea-
ture and is not available in Windows 95.)

Delphi Deficiency
As we all know, the NT API is completely
open in Delphi, but the Delphi environment
doesn’t contain everything required for NT
event logging. Along with some missing API
constant declarations, there is an add-on exe-
cutable in the Borland C++ Development
Suite that, though not technically required, is
a critical piece to creating professional NT
Event Log messages. This tool is the Message
Compiler, or mc.exe. This console applica-
tion comes with the Borland C++
Development Suite, and is not part of
Delphi 3. This is unfortunate, as Delphi pro-
grammers will need this functionality, espe-
cially with the continuing popularity of NT.

Terminology
While tackling this topic and reviewing the
disparate available documentation, the termi-
nology can be confusing and conflicting.
Some of the descriptions may not make
sense until you have finished reading this
article, but you may find the glossary in
Figure 1 useful.

A First Write to the Event Log
Setting aside some of the complexities of the
message file resources and registry keys, the
listing shown in Figure 2 will write a mini-
mal event entry to the NT Event Log.

Now, open the Event Viewer (if it’s already
open, refresh it). The Event Viewer can be
found from the Start menu under Programs |

Administrative Tools | Event Viewer. From the

24 October 1998 Delphi Informant

Figure 1: Glossary of NT Event Log terminology.

procedure TFrm_Main.btnLogMinimalClick(Sender: TObject);

var
hEventLog : THandle; // Handle to the event log.
Msg : PChar;

begin
// Write directly to the log file, w/o any registry
// verification.
Msg := 'Hello NT Event Log'; // A simple message.
// Server name where message dll resides.
// nil indicates local machine.
// ??? is application registry key.
hEventLog := RegisterEventSource(nil, '???');

if (hEventLog <= 0) then begin
raise Exception.Create(

'RegisterEventSource call failed!');

Exit;

end;

if not ReportEvent(hEventLog, 0, 0, 0,

nil, 1, 0, @Msg, nil) then begin
DeregisterEventSource(hEventLog);

raise Exception.Create('Failure in Report Event');

end;

// Return event log handle retrieved by
// RegisterEventSource.
DeregisterEventSource(hEventLog);

end;

Figure 2: Minimal code necessary to write to the NT Event Log
(from frmMain.pas).

Greater Delphi
main menu of the Event Viewer, choose Log | Application as
opposed to System or Security events. Double-click the latest
entry to see a dialog box, as shown in Figure 3.

Notice that the code did not include timestamp logic,
because NT will automatically save the date and time the
message was received. RegisterEventSource retrieves a handle to
the Event Log, with the first parameter defining the server in
which the event source exists (nil if local), and the second
parameter defining the Event Source for the application. The
Event Source is the registry key that, by name, tells the NT
Event Viewer where to find the Event Message File to display
the details of the message. Because we entered ???, and there
is no such key defined, only the raw data we sent to the
Event Log is displayed. The NT Event Viewer doesn’t know
where to look up more information about the event.

The NT Registry, Event Source, and Message File
Typically, messages such as “Couldn’t connect to server” or
“Invalid packet received,” are hard-coded in applications,
which are either written to a text log file or displayed in a win-
dow. NT has defined a format to keep messages in an external
location, which allows you to use them in other applications,
reword them to be more informative, or even translate them to
a different language. This can be done without rebuilding or
redistributing your main application. NT uses a Message File,
Term Description

NT Event Log The “global” log file in which NT stores system, security, and application events. Use of the API
will allow you to read, write, and clear the data in this log.

NT Event Viewer An NT administrative tool to view the NT Event Log. From the Start menu, go to Programs |
Administrative Tools | Event Viewer (path is %SystemRoot%\system32\eventvwr.exe).

Event Source The registry key that defines the message file information your application is using for writing
to the NT Event Log. In the examples in this article, the Event Source is MYAPP_REG.

Event Message File The file that contains the resource-compiled event messages. It’s usually a separate DLL (but
can be embedded in the resources of primary application) and resides in the path defined in
the registry (the Event Source). The path of this file is the value of the EventMessageFile entry
in the registry. In the examples in this article, the Message File is MYAPP_MSG.DLL.

Category Message The file that contains the resource-compiled category messages. It’s usually a separate DLL
File (but can be embedded in the resources of the primary application) and resides in the path

defined in the registry (the Event Source). The path of this file is the value of the
CategoryMessageFile key in the registry. In the examples in this article, the Category Message
File is MYAPP_MSG.DLL (the same file as the Event Message File).

Message Compiler This is the Microsoft tool, mc.exe, described in the Message Compiler section. It compiles the
text-based Message Compiler Source Files into a binary format.

EventID The unique numerical constant defined in the EventMessageFile for the particular event you
are logging.

CategoryID The unique numerical constant defined in the CategoryMessageFile for the particular event you
are logging. If used, this value must be numbered consecutively starting with the number 1.

Message File The output of the Message Compiler. The resulting files are used to create the Event Message
Resources File (DLL).
Message Strings The strings in the Message File Resources, which will be merged with your additional message

information for viewing in the NT Event Viewer (for example, “Started at %1” in
eventmsgs.mc).

Message Compiler The text file from which the EventID, CategoryID, and Message strings are defined. This file is
Source Files compiled by the Message Compiler to create the Message File Resources. In this article, the

Message File Resource source is eventmsgs.mc.

Figure 3: The Event Detail dialog box.

HKEY_LOCAL_MACHINE

SYSTEM

CurrentControlSet

Services

EventLog

Application

MYAPP_REG

CategoryCount 0x00000003

CategoryMessageFile c:\winnt\system32\myapp_msg.dll

EventMessageFile c:\winnt\system32\myapp_msg.dll

TypesSupported 0x00000007

Security

System

Figure 4: Registry layout for Event Source definition.

Greater Delphi
(usually) a DLL that contains a resource with defined event
messages to provide these types of features. If these messages
are changed and the DLL is copied back in the system, the
output of the Event Log is changed. Your original application
can be left untouched. NT determines the message files you are
using by the definition of the Event Source. Figure 4 shows the
registry layout for an Event Source definition.

In this article and the accompanying examples (available for
download; see end of article for details), the Event Source is
MYAPP_REG, and the Message File is MYAPP_MSG.DLL,
which will be deployed to the \System32 directory. The NT
Event Viewer reads the keys (Event Sources) under Application
to fill its filtering and search controls with Event Sources
known to the system. Under each of these keys are values that
give facts about the particular Event Source. Although it’s not
covered in this article, a programmer would also need to know
these same values to read from the Event Log. The
TypesSupported value defines the type of messages supported,
and 7 is the value to support all the main message types —
“Success,” “Error,” “Information,” etc. The EventMessageFile
and CategoryMessageFile values define the path in which the
respective file resides on the system. The CategoryCount
value defines the number of categories defined in the
CategoryMessageFile, which should be accurate, so that the NT
Event Viewer can set up the proper loop-ending value. Also,
note that there is a ParameterMessageFile value, which is not
discussed in this article. Because it’s critical that these values
are correct, an application writing to the NT Event Log
should confirm the configuration. The listing in Figure 5 from
the example code assures proper registry configuration. Note
that the EVENT_SOURCE, CATEGORY_COUNT,
FMsgDLLPath, and FCatDLLPath are constants or private
values of TEventLog to assure they are coordinated with
25 October 1998 Delphi Informant
procedure TEventLog.CheckRegistry;

var
Reg: TRegistry;

const
RegistryMsgRootPath =

'\SYSTEM\CurrentControlSet\Services\EventLog\Application';

begin
Reg := TRegistry.Create;

try
with Reg do begin
RootKey := HKEY_LOCAL_MACHINE;

OpenKey(RegistryMsgRootPath + '\' +

EVENT_SOURCE, True);

if ReadString('EventMessageFile') <> FMsgDLLPath then
WriteString('EventMessageFile', FMsgDLLPath);

if ReadString(

'CategoryMessageFile') <> FCatDLLPath then
WriteString('CategoryMessageFile', FCatDLLPath);

try
// Exception on ReadInteger if value is not
// there. 7 indicates support of all event types.
if ReadInteger('TypesSupported') <> 7 then

WriteInteger('TypesSupported',7);

except on E:Exception do
WriteInteger('TypesSupported',7);

end;

try // Exception on ReadInteger if no value.
if ReadInteger(

'CategoryCount') <> CATEGORY_COUNT then
WriteInteger('CategoryCount',CATEGORY_COUNT);

except on E:Exception do
WriteInteger('CategoryCount',CATEGORY_COUNT);

end;

CloseKey;

end;
finally
Reg.Free;

end;
// Make sure the files exist on the system, assuming
// local server. The messages will still log, but the
// output will be incorrect as viewed through the NT
// Event Viewer.
if not FileExists(FMsgDLLPath) then
raise Exception.Create(

'Event Message File does not exist!' + Chr(13) +

Chr(10) + FMsgDLLPath);

if not FileExists(FCatDLLPath) then
raise Exception.Create(

'Category Message File does not exist!' + Chr(13) +

Chr(10) + FCatDLLPath);

end;

Figure 5: Listing of registry configuration confirmation.

Greater Delphi

;//
;// Category Strings - Must start with the number 1.
;//
MessageId=1

Severity=Success

Facility=System

SymbolicName=CATEGORY_ONE_STRING

Language=English

App Start

.

;//
;// Used by TevtAppStart.
;//
MessageId=33

Severity=Success

Facility=System

SymbolicName=MSG_START_TIME

Language=English

Started at %1

.

;// Used by TevtDiskInfo.
;//
MessageId=40

Severity=Success

Facility=System

SymbolicName=MSG_DISK_SPACE

Language=English

Drive Tested: %1

File System: %2

Disk Size: %3

Free Space: %4

Used Space: %5

.

Figure 6: Message File Resource from eventmsgs.mc.

e files creation flow.
actual counts and the location of the external Event
Message DLL.

Building an Event Message File
Note that in this article, both the Event Message File and
Category Message File will be created as a single DLL, as opposed
to binding into the application’s executable. Binding the .RES
directly in the executable would work (make sure the applicable
registry entries point to the path of the application), but would
remove the independence features the DLL gives. If another lan-
guage was desired, or more description messages were requested, a
recompile (and of course re-testing) of the application would be
required. Depending on the coordination abilities of the local
development environment, it may be desirable to use the same
Event Message DLL for multiple applications, as many error mes-
sages, such as “Application shutdown” and “Unable to connect to
database,” are common. Building the Events and Categories in a
single DLL was done for simplicity, but is not required.

There are three steps to creating the Event
Message File:
1) Create the Message Compiler source file.
2) Compile the Message Compiler

source file.
3) Create the simple “resource only” DLL by

compiling with the Message File Resource.

The source code includes a batch file,
make_msg.cmd, which calls the proper exe-
cutables for the compiling stages. Figure 7: Messag
26 October 1998 Delphi Informant
Create the Message Compiler Source File
The Message Compiler Source file is text-based, conven-
tionally with a file extension of .MC. Besides some header
information, the message source file contains blocks of
message definition sections containing Name=Value style
event message information, and the verbose message
string, as shown in Figure 6. Message blocks are terminat-
ed by a single period, followed by a new line. No spaces
are allowed around the period.

To indicate non-compiled comments, use a semi-colon (;) fol-
lowed by two forward slashes (//). The value you give to
MessageId has some rules. It must be a value from 0 to
65535, and, if defining categories, must be numbered consec-
utively starting with the number 1. If MessageId is left blank,
i.e. MessageId=, the message compiler will automatically set it
to the previous value, + 1. The unique string value given to
SymbolicName will appear in the output C-style header file of
the message compilation, and will show the actual value set
for the EventID or the CategoryID to be used in ReportEvent.

Set Severity to Success and Facility to System, even if
you are defining an error message string. The EventType value
in the ReportEvent function — not the Severity value set in
this file — flags the specific message type in the NT Event
Log. The Language is set to English in the examples, but it’s
important to note that language independence is one of the
primary design goals of the NT Event Log methods.
Applications that require multi-lingual support may build a
single Event Message File, which contains support for each
language set. This article doesn’t go into the language
specifics, but know that there is built-in support if needed.

The final piece of information is the verbose message strings.
These strings are “merged” with the application’s array of
strings you pass in the eighth parameter of the ReportEvent
call. The place marker for the first string array element is %1,
%2 for the second, etc.

Compile the Message Compiler Source File
The Message Compiler Source File is compiled by running
the Message Compiler with the file name as the first parame-
ter, e.g. mc.exe eventmsgs.mc. This compilation will gener-
ate three new files; these files are used to create the Message
File DLL (see Figure 7). One of these files is a C-style header
file, which contains the constant definitions for event mes-

library myapp_msg;

{$R eventmsgs.RES} // Resource with event message info.
begin
end.

Figure 8: Simple DLL, from myapp_msg.dpr.

Greater Delphi

Const Value

(found in winnt.h)

Meaning

NT Event Viewer String

NT Event Viewer Icon Displayed

EVENTLOG_SUCCESS = $0000

Success

Success

Blue Circle with white "I" character

EVENTLOG_INFORMATION_TYPE = $0004

Information

Information

Blue Circle with white "I" character

EVENTLOG_WARNING_TYPE = $0002

Warning

Warning

Yellow Circle with black "!" character

EVENTLOG_ERROR_TYPE = $0001

Error

Error

Red Stop Sign

EVENTLOG_AUDIT_SUCCESS = $0008

Success Audit

Success Audit

Yellow key icon

EVENTLOG_AUDIT_FAILURE = $0010

Failure Audit

Failure Audit

Padlock icon

Figure 9: NT Event Log type values.
sages. This can easily be converted to a Pascal unit, and
included in your project. The other two files are the binary
message table and a simple resource file.

Create a Resource-only DLL
Using the Borland Resource Compiler on the .RC file (created
by the Message Compiler) creates the .RES to be included in
your Event Message DLL project (brc32.exe -r -
foeventmsgs.res -v -32 eventmsgs.rc). Create a very
simple Delphi DLL project, as shown in Figure 8, and run the
Delphi Compiler from the command line to create the DLL
with the new message resource, dcc32.exe myapp_msg.dpr.

At this point, an official Event Message (and Category
Message) File is created and ready to be deployed and used by
an application. Technically, while much of the difficult work
is already done at this point, additional integration issues
need to be addressed.

Integration of Event Message File with Applications
and Deployment
The relationship of an application logging to the NT Event
Log, using a corresponding Event Message File, is very similar
to an application utilizing the Windows Help system with an
external Help file. When referencing a Help file, the pro-
grammer must be provided with the Help topic integer val-
ues, which means there must be a close synchronization
between the application and Help-file programmers.

The same is true for NT Event Log development; the pro-
grammer must know the event messages and defined values.
An attempt to create a single generic Delphi component to
encapsulate the NT Event Logging would be very difficult,
as each message will require different input than others.
However, some sort of component-based strategy allows easy
sharing of the Event Message DLL and API throughout mul-
tiple applications. A logical development assignment would
be that one developer would create the Event Message File,
and build “wrapper” components for the events, and the
other developer would use the components in an applica-
tion. The implementation used in the example source is to
create a component, TEventLog, that primarily simplifies the
NT Event Log API and registry specifics, and then create a
set of descendant components, one for each specific event
message. TEventLog has a private method, CheckRegistry,
which is called before writing to the Event Log to assure the
registry is properly configured (as described earlier in this
article). Its other primary task is to simplify the ReportEvent
API call. ReportEvent returns True if the entry was written to
the log, and is declared in Windows.pas as follows:

function ReportEvent(hEventLog: THandle;
wType, wCategory: Word; dwEventID: DWORD;

lpUserSid: Pointer; wNumStrings: Word; dwDataSize: DWORD;

lpStrings, lpRawData: Pointer): BOOL; stdcall;

where:
hEventLog is the handle returned by RegisterEventSource.
wType is the type of event to be logged.
27 October 1998 Delphi Informant
wCategory is the category identifier defined in the
Category Message File. Set to 0 for a default category
description of NONE.
dwEventID is the event identifier defined in the Event
Message File.
lpUserSid is the user’s security identifier (not discussed in
this article). Set to nil if not required.
wNumStrings is the number of null-terminated strings in
the lpStrings parameter array.
dwDataSize is the number of bytes of raw data to write to
the log, as pointed to by lpRawData. This value is shown
in the detail view of the NT Event Log viewer. Set to 0 if
not sending raw data.
lpStrings is an array of null-terminated strings, which are
application set values.
lpRawData is the raw data buffer. Set to nil if not sending
raw data.

Figure 9 shows the constant value declared in winnt.h.
Also shown is what appears in the NT Event Viewer for
the specific value.

The trickiest part of TEventLog is encapsulating the lpStrings
parameter. ReportEvent expects this to be a pointer to an array of

Greater Delphi
null-terminated strings. The first string will be inserted in the %1
marker, as defined in the Message Compiler Source File, the sec-
ond in %2, etc. Because working with TStringList is so familiar,
the descendant classes of TEventLog can use the Msg property to
28 October 1998 Delphi Informant

constructor TEvtAppStart.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

// Code these protected values to assure they are
// "in sync" with Message File DLL.
EventType := etInformation;

EventID := MSG_START_TIME;

CategoryID := CATEGORY_APP_START;

end;

Figure 10: Setting up values for a specific message.

procedure TFrm_Main.btnLogDiskInfoClick(Sender: TObject);

begin
EvtDriveInfo1.Msg.Clear;

with GetDiskSpaceInfo(cbDrives.Text[1]) do begin
// Fill msg with drive info.
EvtDriveInfo1.Msg.Add(Drive);

EvtDriveInfo1.Msg.Add(FileSystem);

EvtDriveInfo1.Msg.Add(DiskSize);

EvtDriveInfo1.Msg.Add(FreeSpace);

EvtDriveInfo1.Msg.Add(UsedSpace);

EvtDriveInfo1.Msg.Add(PercentFull);

end;
EvtDriveInfo1.Log;

MessageDlg('Disk info sent to NT Event Log!',

mtInformation, [mbOK], 0);

end;

Figure 11: Using TevtDiskInfo.

Figure 12: NT Event Log demonstration application.
fill these strings with the well-known methods Add, Insert, etc.
SetMsg is called before calling ReportEvent, which will format the
TStringList to an array of PChar, and set the wNumStrings para-
meter, which is simply the TStringList.Count value.

For the specific message indicating the start time of the
application, TEvtAppStart is created, which descends from
TEventLog. The TEvtAppStart component hard-codes the
EventID and CategoryID for the message, wrapping it up as
shown in Figure 10.

Note that the constants EventID and CategoryID are assigned
to a constants-defined header file created by the Message
Compiler. An application can drop this component on the
main form, and in the FormCreate procedure, call the Log
method, with no additional work. Suppose a requirement is to
log disk-drive information when an application starts. A disk
information message is created in Event Message File, which
expects five data values (again, see Figure 6).

A component, TevtDiskInfo, is created — again descending from
TEventLog, which, in its Log event, will format the values and
write to the Event Log. In this case, the application programmer
will need to know the order of the strings, but does not need to
know the event message constants wrapped in the component.

The listing in Figure 11 calls a utility function,
GetDiskSpaceInfo, which, when passed a drive letter, returns a
record of disk information. The code adds the values to Msg
and calls Log. As long as the Event Message File is deployed on
the target machine, these components can be used by many
different applications to write to the NT Event Log. Make
sure that whatever the deployment strategy, the Event Message
File is copied to the proper directory on the target machine.
Most applications put the file in the \System32 directory, but
this is not required; it doesn’t matter, as long as the directory
path is the same as expected by the application.

Demonstration Application
The demonstration application shows the use of these custom
components, and can demonstrate the effect of the EventType
values on the NT Event Viewer (see Figure 12).

Entries are made to the NT Event Log when the application
is created and destroyed. A combo box is filled with available
drives, and with the click of a button, will write the informa-
tion to the NT Event Log using the TEvtDiskInfo compo-
nent. Figure 13 shows the event detail from the NT Event
Viewer. Note that TEventLog put in dummy data “A Delphi
based NT Event Log example,” but this data could be used to
store internal codes or OS error return codes.

A generic message event was created for free-form messages to
demonstrate various error types. A combo box contains vari-
ous error types, and a memo to enter a message. Figure 14
shows the NT Event Viewer GUI with the demonstration
messages with different error types. Generic messages are not
recommended for real applications, as the Event Message File

Greater Delphi

Figure 13: NT Event Viewer detail of disk information.

Figure 14: The NT Event Viewer with application messages.
should contain most of the verbose text, so that it can be
translated or rewritten. Note how the NT Event Viewer
extracted the category string from the event file for display, as
the ReportEvent call only takes an integer.

Conclusion
At some point, you’ll need to write your application mes-
sages to the NT Event Log. This practice should be
encouraged for the benefit it brings to the users (e.g. IT
personnel), as well as assisting in maintenance and field
troubleshooting of your applications. While grasping the
methods of the NT Event Log is slightly advanced, it can
become simplified by building custom components to hide
the unique values and API complexities.

While this article explains the methods of writing to the NT
Event Log is, there are additional APIs available to clear, read,
backup, and receive notifications when a write to the log has
taken place. Using these other features, one could create a
custom NT Event Viewer that filters only specific application
messages, displays the Event Log entries on a Web page, or
sends an e-mail when a particular message is encountered. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\OCT\DI9810TH.
29 October 1998 Delphi Informant
Ted Houts is a client/server software development contractor currently doing work
at a large telecommunications company. He has been developing in Delphi since
its initial release. Ted can be reached via e-mail at thouts@rockway.com.

30 October 1998 Delphi Informant

Delphi Database Development
Part II: Tables, Queries, and Stored Procedures

DBNavigator
Data Access / Borland Database Engine

By Cary Jensen, Ph.D.
T he previous installment of “DBNavigator” (in the August, 1998 Delphi
Informant) was the first article in a series intended to re-examine Delphi

database development. That column explored the relationship between the var-
ious data access components and the Borland Database Engine (BDE). The
series continues this month with a look at the basic configuration and use of
the TDBDataSet classes, including TTable, TQuery, and TStoredProc.
In Delphi 2 and earlier, the classes dis-
cussed here were referred to as TDataSet
classes. In Delphi 3 Client/Server, the
TDataSet class also includes the
TClientDataSet class (a detailed discussion
of which will be deferred to a future arti-
cle). The distinction is that the
TDBDataSet classes make use of the BDE,
while the TClientDataSet does not (it,
instead, relies on the DBClient DLL for
data access). While the Table, Query,
StoredProc, and ClientDataSet components
are all TDataSet descendants, only the first
three descend from TDBDataSet.

As mentioned at the outset, the following
discussion focuses on basic configuration and
use of these classes. However, before dis-
cussing how to access data using
TDBDataSet classes, it’s worth taking a
moment to consider the origin of the data
that these components access.

Tables, Data, and Files
The data used in the examples that normally
appear in this column can be found in
Delphi’s \Demos\Data subdirectory. These
database files were installed when you
installed Delphi. While these files are perfect
for a demonstration, you’ll use other files
when creating your own databases. This rais-
es a fundamental question: Where do you get
your data files?
There are a variety of answers, and they range
from the simple to the complex. In some
instances, you are provided with existing files
that contain the data that will be employed by
the application. This is often the case when you
are building an application in Delphi based on
an existing application (such as creating a
Windows version of an old DOS or mainframe
application). This situation is even easier when
Delphi directly supports the file type of the
tables you are provided, such as when you’re
creating a Delphi application based on a pre-
existing Paradox for Windows application or
dBASE application. All but the earliest Paradox
and dBASE files can be used in Delphi applica-
tions without modification.

If you’re provided with files in a format not
supported directly by Delphi, you must first
convert these files into a supported format.
How difficult the conversion will be depends
on the original file type. For example, if the
data is in a delimited ASCII format, there are
a number of tools for converting these files to
dBASE, or some other useful file format. In a
worst-case scenario, you will need to manual-
ly write a data translation program. (This can
be done in Delphi using the standard Pascal
I/O functions.) Note, however, that unsup-
ported file formats are not common, due to
Delphi’s support for ODBC (Open Database
Connectivity) drivers, which exist for most
database file formats.

DBNavigator
If data doesn’t exist, you will be responsible for creating the
tables yourself. If the application specification includes the
specifications for the tables, you can use the Database Desktop
that ships with Delphi to create the table structures. (A table
structure defines the number of fields [columns] in the table,
as well as their names and data types.)

If no definition of the tables required by the application exists,
you will either need to define these yourself, or enlist an expe-
rienced database developer or database analyst to help you do
so. Creating a specification involves identifying the data that
needs to be stored, and designing table structures that permit
it to be stored correctly and efficiently. There are a number of
books on the market that describe this process.

Basic TDBDataSet Configuration
Regardless of which DBDataSet component you use, you
must provide it with a minimum of two pieces of informa-
tion. The first is the type of driver to use for data access. In
the case of local databases, the BDE uses this driver to read
and write the data. For remote database servers, the driver
defines how the BDE communicates with the database server.

The second piece of information required for data access is a
reference to the data itself. For example, when using local
Paradox tables, a DBDataSet must know which table to access.
Likewise, when using a remote server, it’s necessary to indicate
which tables, views, or stored procedures you want to use.

Each of the DBDataSet components have different properties
for defining these two basic pieces of data. These are described
separately in the following sections.

Accessing Data Using Tables
A Table component is the most general — and easiest to use —
of the DBDataSet components. It can be used to access data in
any BDE-supported format. For example, you can use a Table
component to read and write from Paradox and Oracle tables.

The basic access to data with a Table component involves, at a
minimum, a single property, but more often two properties.
When you are accessing local tables, you merely need to define
the TableName property. This property can contain either the
31 October 1998 Delphi Informant

Figure 1: Accessing data using a Table component.
name of a Paradox or dBASE table, or it can contain the fully-
qualified DOS path and table name. Including the DOS path
in the TableName property is required if you want to activate
the table at design time. If you don’t need design-time access to
data, you can enter only the table name, and the BDE will look
for that table in the same directory as your project’s EXE.

Normally, the BDE will determine which driver to use to access
your data based on the DatabaseName property. However, when
you do not assign a value to this property using the TableName
property alone, the BDE will determine which driver to use
(specifically, which of several available BDE DLLs to use) based
on the file extension of the table name. If the file extension is
omitted, it will choose a driver based on the TableType property.

As previously mentioned, the BDE can determine which driver to
use, based on the DatabaseName property. This is the second of
the two properties typically used to configure a Table component
(again, the first being TableName). Assign one of three possible val-
ues to this property. First, you can assign any configured ODBC
data source name. A configured ODBC driver includes a data
source location. When you do so, the BDE will use the ODBC
socket to communicate with the specified driver, converting all
instructions to Structured Query Language (SQL) statements.

The second type of value you can assign to the DatabaseName
property is the name of a database configured using the BDE
Administrator. A configured database is often referred to as a
global alias because it can be used by any BDE-aware applica-
tion. Among other things, a configured global alias defines
both the driver and data location.

The third type of value you can assign to the
DatabaseName property is the value of a DatabaseName
property of a Database component within your project.
This type of value is called a local alias because it’s available
only within the project in which the Database component
appears. To use a local alias, the Database component must
be configured. This involves defining the driver type and
data location. Configuring a Database component will be
covered in a future “DBNavigator” article.

These steps demonstrate the configuration of a Table component:
1) Create a new project. Add to it one DBNavigator, one

DBGrid, one DataSource, and one Table component.
2) Set the DBNavigator’s Align property to alTop, and the

DBGrid’s Align property to alClient. Next, set the
DataSource property of both the DBNavigator and
DBGrid to DataSource1.

3) Set the DataSource’s DataSet property to Table1.
4) Now it’s time to configure the Table. Begin by setting its

DatabaseName property to DBDEMOS. This is a global
alias that was created during Delphi’s installation. Next, set
the Table’s TableName property to CUSTOMER.DB. If
you now set the Table’s Active property to True, you’ll see
the design-time view of your data in the DBGrid, as
shown in Figure 1. In addition, it ensures that the Table is
opened when the form is created at run time.

DBNavigator

Figure 2: Data displayed in a DBGrid component on a running
Delphi form.
If design-time access to your data isn’t necessary, you can
leave the Table’s Active property set to False, and add the fol-
lowing code to the form’s OnCreate event handler:

Table1.Open;

Calling the Table’s Open method has the same effect as setting
its Active property to True. Press 9 to compile and run the
form. Your screen should now look like that in Figure 2.

Basic Query Configuration
Use the Query component to execute SQL statements
against one or more databases. These SQL statements can
either be Data Definition Language (DDL) statements (e.g.
CREATE TABLE and ALTER INDEX), or they can be Data
Manipulation Language (DML) statements (e.g. SELECT,
UPDATE, and DELETE). The most common statement,
however, is the SELECT statement, which produces a view
similar to that available using a Table component.

The minimum configuration of a query involves setting its
SQL property. For example, the following SQL statement
returns all fields and records (columns and rows) from the
Customer table in the directory pointed to by the
DBDEMOS alias:

SELECT * FROM ":DBDEMOS:Customer"

Alternatively, if you set the DatabaseName property of the
Query to DBDEMOS, you can omit the alias name and quo-
tation marks from the SQL statement. For example, if you set
DatabaseName to DBDEMOS, the following SQL statement
is equivalent to the preceding one:

SELECT * FROM Customer

After you set the SQL property, and optionally, the
DatabaseName property, setting the Active property to True
causes the query to be executed. (A query, such as
DELETE, that doesn’t return a result set, is executed by
calling ExecSQL.)
32 October 1998 Delphi Informant
If your query uses a SELECT statement, it’s sometimes
possible to edit the result set. Two conditions must exist to
edit the result set of a query. The first is that the query’s
RequestLive property must be set to True. Second, the result
set must contain records from a single table, and there
must be a one-to-one correspondence between the records
in the result set and the queried table. In other words, if
the query contains a join between two tables, or makes use
of statements such as DISTINCT or SUM, the query can’t
be edited (unless the query’s CachedUpdates property is set
to True). Cached updates will be discussed in detail in a
future “DBNavigator” article.

You can test whether a query is live (editable) or not by calling
its CanModify method. If CanModify returns True, the BDE
will issue a corresponding UPDATE, INSERT, or DELETE
query against the table you queried in response to posting
changes, and inserting or deleting records, respectively.

Preparing Queries
Before a query can be executed against a database server, it
must be prepared. The process of preparation involves gener-
ating an execution plan on the remote database server. If you
open or execute a query without preparing it, the BDE will
automatically prepare the query prior to execution, and
unprepare it when the query is closed.

Preparing a query is a time-consuming process. If you need
a query to execute very quickly when it’s opened, you
should explicitly prepare the query in advance. One com-
mon event used for performing this operation is the
OnCreate event handler for the form or data module on
which the query appears. When you explicitly prepare a
query, the BDE doesn’t “unprepare” it for you. Instead,
you must explicitly call Unprepare to release the resources
on the database server. This can easily be done from the
OnClose event handler for the form or data module.

Explicitly calling Prepare is particularly important when
you are working with parameterized queries. A parameter-
ized query includes one or more parameters. A parameter is
a label, similar to a variable, that must be assigned data
before the query’s execution. A parameterized query doesn’t
need to be re-prepared each time the parameter is changed.
This permits you to execute a parameterized query repeat-
edly, without the overhead of preparation. If you fail to
explicitly call Prepare on a parameterized query, however,
the BDE will prepare and unprepare the query each time
you open and close the query (you must close a query
before changing its parameter).

A Query Example
Use the following code to demonstrate the use of a Query
component. This example makes use of the Local InterBase
Server (LIBS). If you are using Delphi 3, installing LIBS is a
separate process from the installation of Delphi. If you cur-
rently don’t have LIBS installed, you must do so first before
continuing with this example. Make sure to restart your com-

DBNavigator

Figure 3: A live query result set can be edited like a table.
puter after installing LIBS, as it’s automatically loaded when
you boot your system.

If you are using Delphi Standard Edition, you don’t have
LIBS. Still, you can follow along with this example using a
local Paradox table, but the query will be executed by the
BDE, rather than a remote database server. To use a Paradox
table, set the Query’s DatabaseName property to DBDEMOS
in step 4, instead of IBLOCAL:
1) Create a new project. Add to it one DBNavigator, one

DBGrid, one DataSource, and one Query component.
2) Set the DBNavigator’s Align property to alTop, and the

DBGrid’s Align property to alClient. Next, set the
DataSource property of both the DBNavigator and
DBGrid to DataSource1.

3) Set the DataSource’s DataSet property to Query1.
4) Now you’re ready to configure the Query. Set its

DatabaseName property to IBLOCAL, and its SQL prop-
erty to SELECT * FROM Customer. Next, set the
RequestLive property to True.

5) You should now add code to control the Query’s prepara-
tion. Add an OnCreate handler to the form and add the
following code to it:

if Query1.Active then
Query1.Close;

Query1.Prepare;

Query1.Open;

6) Finally, create an OnClose event handler for the form and
add the following code to it:

if Query1.Active then
Query1.Close;

Query1.Unprepare;

7) Press 9 to run the form. Once the form is created,
the query is prepared and executed. Executing the
query requires access to the server. Because this access
requires a password, a password dialog box is displayed.
Enter the password masterkey in the Password field of
the Database Login dialog box (this password is case-
sensitive). After you have accepted the password dialog
box, your form is displayed, as shown in Figure 3.

Tables vs. Queries
Because Query and Table components can be used inter-
changeably to edit data, an obvious question is: Which one
should you use in your applications? In most cases, the
answer to this question is straightforward. When accessing
local Paradox and dBASE tables, a Table component generally
provides faster access. On the other hand, when you’re using
data on a remote database server, you’ll typically get better
performance if you use a Query component.

This is a rule of thumb, however; it may not apply in all situ-
ations. If performance is your primary concern, it would be a
good idea to test the relative performance for your particular
33 October 1998 Delphi Informant
data. On the other hand, you might consider using a Table
with a remote database if you’re more comfortable with hav-
ing the BDE generate your SQL, rather than writing it man-
ually. In fact, if your database is indexed properly, and you
make use of Table methods that leverage indexes, such as
Locate, FindKey, FindNearest, and SetRange, a Table compo-
nent’s performance against remote database servers can be
more than satisfactory.

Using Stored Procedures
Unlike Table and Query components, which can be used
with any database (local or remote), StoredProc compo-
nents can only be used with remote database servers.
Stored procedures are pre-compiled subroutines that reside
on the server. A stored procedure can consist solely of SQL
statements, but can also include additional statements
defined by the server’s compiler. For example, stored pro-
cedures can include control structures to provide program
logic on the server.

There are two primary advantages of stored procedures. First,
because they reside on the server, they can be used by two or
more applications to consistently perform a particular opera-
tion. For example, a stored procedure to add a new employee
to a database ensures that all applications that use it insert a
new employee correctly.

The second advantage — and the principle reason stored
procedures are so attractive — is that they provide the
most efficient means of data manipulation. Stored proce-
dures can be executed without having to send lengthy SQL
statements to the server. In addition, because stored proce-
dures are pre-compiled, they can be executed with less
overhead than an equivalent SQL query. Finally, because
stored procedures can include statements beyond SQL,
they can be used to leverage the strengths of the database
server on which they are defined.

Delphi permits you to execute stored procedures, but not
to write them. Instead, you use the tools associated with
your database server to write and compile your stored pro-

DBNavigator

Figure 4: The stored procedure example under construction.
cedures. Consequently, it goes without saying that you can
create stored procedures only if you have sufficient access
rights to the server on which your data resides.

There are two general types of stored procedures: those
that return a cursor to a result set (similar to a SELECT
query), and those that do not. Stored procedures that don’t
return a result set may perform some operation on the
server, such as emptying a table, or they may return single
values by means of output parameters. In fact, both kinds
of stored procedures can make use of parameters that per-
mit you to send information to the stored procedure. For
example, a stored procedure used to archive old records
may be passed a date that it will use to determine which
records are old.

Whether a stored procedure returns a dataset may influence
which component you use to execute the stored procedure.
For example, when executing a stored procedure on an
InterBase server, you can use a StoredProc component only if
the stored procedure doesn’t return a result set. You must use
a Query component for those InterBase stored procedures
that return a result set. On the other hand, if you’re using
stored procedures in Microsoft SQL Server database, you can
always use the StoredProc component, regardless of whether
the routine returns a result set.

Like queries, stored procedures must be prepared prior to
their execution. In fact, you can apply the same principles
concerning the preparation of queries to stored procedures.
Specifically, if you don’t explicitly prepare a stored procedure,
Delphi will do it for you. Furthermore, stored procedures pre-
pared automatically are also unprepared automatically when
they are closed. However, if you explicitly prepare a stored
procedure by calling its Prepare method, Delphi will not
unprepare it, meaning that you’ll also be responsible for call-
ing the StoredProc’s Unprepare method. As a result, it’s gener-
ally considered a good idea to explicitly prepare a stored pro-
cedure that’s called repeatedly, explicitly calling its Unprepare
method when you no longer need it.

Stored Procedure: Example 1
This first example demonstrates how to execute a stored
procedure that includes input and output parameters, but
doesn’t return a result set. For this purpose, we will use the
stored procedure named MAIL_LABEL, which is available
in the EMPLOYEE.GDB database that’s installed with
LIBS. Consequently, to follow along with this example,
you must have LIBS installed (you cannot execute stored
procedures with local tables):
1) Begin by creating a new project. Place two Panel compo-

nents onto it. Set the Caption property of both panels to
an empty string. Next, set the Align property of one of the
panels to alRight, and the Align property of the other to
alClient.

2) Place one DBNavigator and one DBGrid into the Panel
aligned to the client. Align the DBNavigator to alTop, and
the DBGrid to alClient.
34 October 1998 Delphi Informant
3) Next, place six Label components into the Panel aligned
to the right. Adjust their position so they’re left-aligned
with respect to one another, and are spaced equally. Their
positioning should resemble the lines of a correctly-
addressed letter. Your form should look something like
Figure 4.

4) Now add two DataSource components to the form: one
Query and one StoredProc. Set the DataSet property of
DataSource1 to Query1, and the DataSet property of
DataSource2 to StoredProc1.

5) Select Query1 and set its DatabaseName property to
IBLOCAL, and its SQL property to SELECT * FROM
Customer.

6) Select StoredProc1 and set its DatabaseName property to
IBLOCAL, and its StoredProcName property to
MAIL_LABEL.

7) Select both the DBNavigator and the DBGrid, and set
their DataSource properties to DataSource1.

8) It’s now time to add code to control the preparation of
the stored procedure. (In this case, we won’t prepare the
query, because it will be executed only once.) Select
Form1 in the Object Inspector, and double-click the
space to the right of the OnCreate event handler on the
Events page. Enter the following code into the method
generated by Delphi:

StoredProc1.Prepare;

Query1.Open;

This code prepares the stored procedure and then opens
(executes) the query.

9) Because we explicitly prepared the stored procedure, we
must also unprepare it. With Form1 still selected, double-
click the OnClose event property in the Object Inspector,
and enter the following code:

StoredProc1.Unprepare;

10) The execution of the stored procedure will be performed
each time the user navigates to a new record in the query.
This can be achieved by adding the following code to the
OnDataChange event handler of DataSource1. Select

Figure 5: The mailing label is formatted by a stored procedure
on the Local InterBase Server.

Figure 6: The result set returned by a stored procedure on the
Local InterBase Server is accessed using a Query component.

DBNavigator
DataSource1, then double-click the OnDataChange event
property in the Object Inspector. Add the following code
to the generated method:

StoredProc1.ParamByName('CUST_NO').AsString :=

Query1.FieldByName('CUST_NO').AsString;

StoredProc1.ExecProc;

Label1.Caption :=

StoredProc1.ParamByName('Line1').AsString;

Label2.Caption :=

StoredProc1.ParamByName('Line2').AsString;

Label3.Caption :=

StoredProc1.ParamByName('Line3').AsString;

Label4.Caption :=

StoredProc1.ParamByName('Line4').AsString;

Label5.Caption :=

StoredProc1.ParamByName('Line5').AsString;

Label6.Caption :=

StoredProc1.ParamByName('Line6').AsString;

This stored procedure has seven parameters.
CUST_NO is an input parameter; it must be assigned
a value before executing the stored procedure. The
parameters named Line1, Line2, etc., are output para-
meters, and are assigned a value as a result of the exe-
cution of the stored procedure.

11) Now, run the project. Enter the password masterkey
when prompted. When the project is running, your
screen should look something like Figure 5. Now
navigate between the various records in the DBGrid.
Notice that the mailing label represented by the
Label components is updated each time you arrive on
a new record.

Stored Procedure: Example 2
This next example demonstrates how to execute an InterBase
stored procedure that returns a result set. As mentioned earli-
er, this involves the use of a Query component.
1) Create a new project. Add one DBNavigator, one

DBGrid, one DataSource, and one Query component to
the main form.

2) Set the Align property of the DBNavigator to alTop, and
the Align property of the DBGrid to alClient. Set the
DataSource property for both the DBNavigator and
35 October 1998 Delphi Informant
DBGrid to DataSource1.
3) Select DataSource1 and set its DataSet property to Query1.
4) Now select Query1 and set its DatabaseName property to

IBLOCAL and its SQL property to SELECT * FROM
ORG_CHART.

5) Finally, set the Query’s Active property to True. This caus-
es the SQL statement to execute, producing a call to the
ORG_CHART stored procedure. Your main form should
look like Figure 6. You can run the project; it will result
in a display similar to the one you see at design time.

Conclusion
The DBDataSet components permit you to work with data
stored in a database. The component you use for a particu-
lar application will usually depend on the type of database
you’re working with, and the performance and features you
want to use. The next “DBNavigator” will take a look at
the Database component. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is co-author of 17 books, including Oracle
JDeveloper [Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill,
1998], and Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing
Editor of Delphi Informant, and is an internationally-respected trainer of Delphi
and Java. For information about Jensen Data Systems consulting or training ser-
vices, visit http:// idt.net/~jdsi or e-mail Cary at cjensen@compuserve.com.

http:// idt.net/~jdsi

36 October 1998 Delphi Informant

Wise Installation System 6.01
The Installation Program

New & Used

By Bill Todd

Figure 1: The opening screen of
I f you need to install the Borland Database Engine (BDE) with your Delphi
applications, Wise Installation System version 6.01 is the installation program

you’ve been waiting for. Wise offers complete control of the BDE installation,
including the directories in which the BDE and its configuration file will be
installed, and every setting in the BDE configuration file.
The Installation Base
Wise Installation System is a script-based
installation program that includes 16- and
32-bit versions, and contains an excellent
wizard to build the script for you. With
Wise, you have the best of both worlds. The
wizard lets you create most installations
quickly and easily. However, when you need
to do something special, you can switch to
the script editor with a single mouse click,
and have total control.
the installation wizard.
When you start Wise, the opening screen
of the installation wizard appears as shown
in Figure 1. As you move through the
installation attributes in the list box on the
left, the icons and titles on the right
change. These icons represent a page in a
dialog box, giving you instant access to all
of them, no matter which one you start
with. You’ll always begin by double-
clicking Installation Interface to access the
dialog box shown in Figure 2.

Wise supports both single-file and diskette-
based installations. Single-file installation
provides a single executable that contains
the entire installation. This option is per-
fect for installations from a file server or
CD-ROM, or to let users download the
entire installation from the Internet or
an intranet. If you select diskette installa-
tion, you have the option of specifying a
custom size in addition to the standard 3
1/2-inch or 5 1/4-inch diskettes. One fea-
ture I particularly like is that Wise checks
the current working directory before it
prompts you to insert the next diskette
during the installation process. This means
that even if you deliver your installation on
several diskettes, your users can copy the
single file from each diskette to a
directory on a file server, and run the
installation from there.

Figure 2: The Installation Interface dialog box.

Figure 3: The Dialogs tab in the Installation Interface dialog box.

New & Used

Figure 4: The BDE options provided by the installation wizard.
Using the Application tab of the Installation Interface
dialog box, you specify the name of your application
and the directory in which to install it. You can have the
installation directory automatically placed in the user’s
Program Files directory, or you can specify a complete
path. Wise includes a variety of standard dialog boxes,
and the Dialogs tab lets you choose which ones the
users will see during the installation (see Figure 3). The
options include:

displaying a ReadMe file,
prompting for the user’s and company name,
saving a backup copy of any files that are replaced,
choosing the destination location, and
selecting the components to be installed.
37 October 1998 Delphi Informant
The option to omit the dialog box that lets you specify
the installation location can be particularly handy if you’re
trying to enforce a consistent configuration on all
machines. While the ability to select from the list of stan-
dard dialog boxes is nice, the real power lies in the dialog-
box editor. Using this tool, you can modify any of the
standard dialog boxes, or create your own, and add them
to your installation.

File Management
Wise gives you complete control over the files you include
in your application. You can create any number of file
groups and name them anything you wish. You can also
choose whether a file group will be installed by default or
not. Your file groups appear in the Installation
Components dialog box during installation. Those
installed by default are check marked. You can change
which file groups are selected by clicking them. Using file
groups, you can easily create an installation using local
tables where the empty database tables are not installed by
default. This reduces the risk of someone overwriting an
existing database when trying to install on a new work-
station at a later time.

Wise Choices
Wise provides run-time installation support for Microsoft Visual
Basic, Microsoft Visual FoxPro, and a host of ODBC drivers.
However, for Delphi developers, it’s the BDE support that makes
Wise stand head-and-shoulders above its competition. Figure 4
shows the BDE options provided by the installation wizard. The
BDE Installation Type drop-down menu shows the seven options.
You can install the full 16- or 32-bit BDE, perform a partial 32-
bit BDE installation, or add aliases to an existing 16- or 32-bit
BDE installation. Check boxes let you select which, if any, SQL
link drivers to include in your BDE installation.

38 October 1998 Delphi Informant

Figure 5: The BDE installation screen.

New & Used

Figure 6: The BDE Advanced Options dialog box.

Figure 7: The Wise script editor, which offers more options than th
wizard.
If you install the full 32-bit BDE, you have your choice of
including the Advanced Dialog or not. Figure 5 shows the
screen the end-user sees when installing an application that
includes the BDE with the Advanced Dialog option. The
Browse button for the BDE lets you choose where to install
the BDE itself. This makes it possible for the user to install a
single copy of the BDE to a shared directory on a file server
so it can be shared by all users on the network.

Clicking the Advanced button displays the dialog box shown in
Figure 6, which lets the user select the location for the BDE con-
figuration file and its name. Users can also choose whether to
import existing configuration file information, and whether to
save the configuration file in 16-bit compatible format or not.

Wise supports all four possible BDE installation configurations:
1) placing the BDE and configuration file on each workstation,
2) placing the BDE on each workstation but letting all users

share a single configuration file on the server,
3) placing the BDE and configuration file on the server, or
4) placing the configuration file on each workstation, and

the BDE on the server.

INPRISE recommends putting the BDE on each workstation
to provide the best performance. However, with large, high-
performance networks, many organizations find that the ease
of administration and upgrade installation they get by having
a single shared BDE and configuration file more than com-
pensates for any decrease in performance they experience.
Regardless of the BDE configuration option you favor, Wise
gives you the option to configure the BDE to best meet your
needs. Note that you must save the BDE configuration file in
16-bit compatible format if all the users on a network will
share a single configuration file. Therefore, you might want to
use the dialog-box editor to remove these check boxes.

Wise also lets you set any option in the
BDE configuration file as part of your
installation. For example, to set the
Paradox driver’s NetDir parameter to the
BDENet directory under your main
installation directory, just add the line:

\DRIVERS\PARADOX\INIT\NET DIR:

%MAINDIR%\BDENet

to the parameters list for any alias you’re
creating. The path in this example is the
same path used by the BDE API function
DbiOpenCfgInfoList to modify the BDE
configuration file. You can find a complete
list of these paths at http://www.inprise.
com/devsupport/bde/bdeapiex in the
example for DbiOpenCfgInfoList. This
feature lets you say goodbye to writing
separate programs that use complex
BDE API calls to configure your BDE
installation the way you want it.

e installation

http://www.inprise.com/devsupport/bde/bdeapiex
http://www.inprise.com/devsupport/bde/bdeapiex

New & Used
If you need to go beyond the options the installation wizard pro-
vides, a single mouse click will take you to the Wise script editor
shown in Figure 7. The script editor is powerful and easy to use.
All the script commands are shown in the left-hand list box. To
add a command to the script, drag and drop it where you want
it. To set the options for the command, right click it, choose Edit,
and a dialog box will appear that prompts you for any parame-
ters or other information the script command requires. This
approach gives you the power of a complete programming lan-
guage without the need to learn the language and its syntax.

The scripting language is complete with a full set of looping
and flow-control statements, as well as commands to do
everything from creating program manager icons, registry
entries, and directories, to reading and writing text files. Wise
also includes a debugger for solving any problems with your
scripts, as well as a test mode so you can see what your instal-
lation looks like without actually installing any files.

Wise Web Support
The Enterprise version of Wise also includes a patch file utility
and a Web deployment option. The patch feature allows you to
create patch files that will update one or more older versions of
your program, or any of its files to a new version. Patch files
are a great way to distribute updates to a program over the
Internet or any low-speed connection because they are typically
much smaller than the file being patched. Another advantage is
that you can put patch files on a public Web site because they
are useless to anyone who doesn’t have the original program.

The WebDeploy system allows users to install software using files
on a Web server. Only the files needed for the options the user
selects are downloaded to the user’s computer. This can save a
substantial amount of file transfer time if your software offers
many options. The one problem with WebDeploy is that users
aren’t left with a set of files they can reinstall from if necessary. It
also means that the user could be left with a partially installed
program if the connection to the Web is lost. For these reasons,
the WebDeploy system seems suitable for a corporate intranet,
but not for commercial software distribution over the Internet.

Conclusion
Wise Installation System 6.01 is an outstanding tool for
installing Delphi applications. Nothing I’ve seen comes close to
the complete support that Wise offers for installing and config-
uring the BDE. With the wizard, easy-to-use scripting language,
dialog-box editor, and debugger, you can build for any Delphi
application an installation that does everything you need. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database pro-
gramming books, including Delphi: A Developer’s Guide [M&T Books, 1995]
and Creating Paradox for Windows Applications [New Riders Publishing,
1994]. He is a member of Team Borland, providing technical support on the
Borland newsgroups, and has been a speaker at every Borland Developers
Conference. He is also a Contributing Editor to Delphi Informant. He can be
reached at BillTodd@compuserve.com or (602) 802-0178.
39 October 1998 Delphi Informant
Wise Installation System version 6.01
is the installation program you’ve been
waiting for. Nothing comes close to the
complete support that Wise offers for
installing and configuring the BDE.
With the wizard, easy-to-use scripting
language, dialog-box editor, and debug-
ger, you can build an installation that
does everything you need for any
Delphi application.

Wise Solutions, Inc.
5880 N. Canton Center Rd., Suite 450
Canton, MI 48187

Phone: (734) 981-4970
Fax: (734) 981-9746
E-Mail: sales@wisesolutions.com
Web Site:
http://www.wisesolutions.com
Price: US$299; Enterprise Edition,
US$699

http://www.wisesolutions.com

40 October 1998 Delphi Informant

WPTools
An Everyday Library of Word Processing Components

New & Used

By Alan C. Moore, Ph.D.
E very day, it seems, our users expect more from our applications. In text edit-
ing or word processing, plain text just doesn’t cut it anymore. INPRISE knew

this and included the TRichText control beginning with Delphi 2. However, if you
want to use rich text features in a 16-bit application, you’re out of luck. And
while the TRichText control in Delphi 2 and beyond is a big step up from
TMemo, it can’t help in a lot of specialized situations where you want more con-
trol over the appearance of text. If you’re facing such a dilemma, the product
we’ll be examining in this review, WPTools 2.07 by Julian Ziersch of Munich,
Germany, may be the answer.
Overview
WPTools consists of over 20 components (see
Figure 1), support classes, and several other
low-level classes (referred to as data struc-
tures). Built from the ground up, these com-
ponents aren’t dependent upon classes new to
the 32-bit Delphi versions, and are less likely
to be affected by changes that might occur in
future versions of Delphi. They bring .RTF
file support to Delphi 1 for 16-bit Windows
applications (see Figure 2). The sidebar,
“Rich Text Format — A Quick Refresher” on
page 42, reviews RTF for those who may be
unfamiliar with it.

First, we’ll take a detailed look at the central
component, TWPRichText. After that, we’ll
discuss the other components, beginning
with the user interface components most
closely associated with TWPRichText. We’ll
conclude by looking at some of the newer
features, and by discussing the library’s
strengths and weaknesses.

TWPRichText: A Superior RTF Component
Before discussing TWPRichText, let’s take a
look behind the scenes. The WPReader sup-
port class takes care of all the gory details
of reading and interpreting the various
identifiers, tags, and special characters.
During its initialization, this unit reads
170 such items (including bitmap identi-
fiers) into its internal storage.

The main component, TWPRichText, is
derived from TWPCustomRichText. The latter
is a subclass of TWPCustomRtfEdit, which is
the base class. It wraps a Memo object, which
includes most of the RTF functionality, but
doesn’t have its own handle. And, like its
Delphi cousin, TRichEdit, it’s similar in
behavior to TMemo. But rather than simply
working with simple ASCII text, it takes care
of the basic tasks of reading, writing, and dis-
playing rich text like its VCL counterpart.

TWPRichText supports two resolution modes:
device dependent, which is fast but not
WYSIWYG; and device independent, which
provides true WYSIWYG viewing and fast
zooming. There are also two memory alloca-
tion modes: rich and plain text. The latter
consumes less memory.

TWPRichText’s large number of properties
and methods provide the starting point for
building a fully functional word processor,
or adding sophisticated text formatting to
any application. Several properties give you
control over text formatting. The current

Component Description

TWPRichText Edits formatted text: alignment, paragraph spacing, borders, font selection, and colors.
TDBWPRichText Stores text in a database in Memo or BLOB fields. Can switch between RTF or normal

ANSI formats.
TWPRtfStorage Stores formatted text and assigns it to any visual RTF component. Usually used at design time.
TWPRichTextLabel Displays formatted static text that can’t be scrolled or edited. The text can be transparent.
TWPRuler A ruler component managed by TWPRichText. Units can be set to either centimeter or inches,

even at run time.
TWPToolBar Controls one or more TWPRichText or TDBWPRichText components with pre-defined speed

buttons and list boxes.
TWPToolPanel Can handle TWPComboBox and TWPToolButton, and enables automatic alignment of controls.
TWPToolCtrl Helps you use third-party toolbar components with TWPToolButton and TWPComboBox.
TWPComboBox Used with TWPToolPanel, it adds functionality to control TWPRichText.
TWPToolButton Similar to TSpeedButton. Allows you to add functionality to control TWPRichText.
TWPStatusBar Can be used in most projects. It uses strings that can be accessed from the program. You

can also use a gauge.
TWPParagraphBorderDlg Displays a dialog box to set up or edit paragraph borders.
TWPParagraphPropDlg Displays a dialog box to set up the paragraph indentation and spacing.
TWPWallPaper Operates similarly to TImage, but it will tile the picture.
TWPSpellCheckDlg Containing source code, implements spell-checking for TWPRichText or TDBWPRichText.

(WPTools doesn’t have its own dictionary, so a third-party spell-checker is required.)
TWPEdit Based on TWPCustomRichText, provides single-line, RTF-formatted text.
TWPPreview Displays the contents of an attached TWPRichText component in multiple pages, and with

rows and columns.
TWPQuickPrint A printing component. To create reports, place a TQRBand object and TWPDBQuickPrint.
TWPDBQuickPrint Similar to TWPQuickPrint; automatically retrieves data from TDataSource (e.g. TDBMemo).
TWPAltStatusBar A basic status bar suitable for most projects.
TWPPreView A preview control that can display multiple pages in multiple rows and columns.
TWPPreviewDlg A preview dialog box that provides easy access to TWPPreview.
TWPVertRuler A component that displays a vertical ruler (no scrolling yet).

Figure 1: Current WPTools components.

: WPTools provides RTF and HTML support to Delphi 1 for 16-bit
 applications.

New & Used
set of writing characteristics is stored in the
property Attr, and can be changed with the pro-
cedure, ChangeAttr. The latter has two parame-
ters: a TAttr structure (like Attr itself) and a set
containing the attributes themselves,
TWhatToChange. FastResetAttr resets the attribut-
es to their default values. I’ve found this struc-
ture very useful.

Text attributes are defined in the TPersistent sub-
class, TCharacterAttr. They include the state of
each of the following: bold, italic, underline,
strikeout, superscript, and subscript; the state for
each can be tsIgnore, tsTrue, or tsFalse.
TCharacterAttr can be used to change the way
special text (e.g. hyperlinks that can be under-
lined) is displayed. It can also display text with a
certain background. The new version adds a new property,
CurrAttr, making it easier to change text attributes, para-
graph formatting, tabs, and borders. In addition to hiding
text, you can change the text, background, and underline
colors, and indicate if they should be used or ignored. You
can have a background image or even make the back-
ground transparent, and can load the image from a file,
making it possible to load background images with
HTML files.

Figure 2
Windows
41 October 1998 Delphi Informant
Structuring Documents
We generally organize a document’s structure in lines, paragraphs,
and pages. WPTools provides much support for this type of
organization, particularly paragraphs. You can retrieve the num-
ber of the current line and load it into a string. In working with
paragraphs, you can set or change their attributes (including
indentation), read all the text into a buffer, change their ordering
by moving paragraphs, set their alignment (left, right, center,
block), and set their border properties, margins, and spacing.

42 October 1998 Delphi Informant

Group Function Action

sel_ActionIcons SelExit Exit application
sel_ActionIcons SelNew New file in editor
sel_ActionIcons SelOpen Open existing file
sel_ActionIcons SelSave Save file
sel_ActionIcons SelClose Close file
sel_ActionIcons SelPrint Print file
sel_ActionIcons SelPrintSetup Set up printer
sel_EditIcons SelCopy Copy selection
sel_EditIcons SelCut Cut selection
sel_EditIcons SelPaste Paste selection
sel_EditIcons SelSelAll Select all
sel_EditIcons SelHideSel Hide selection
sel_EditIcons SelFind Find selection
sel_EditIcons SelReplace Replace selection
sel_EditIcons SelSpellCheck Execute spell check (event)
sel_ListBoxes SelFontName Font-name list box
sel_ListBoxes SelFontSize Font-size list box
sel_ListBoxes SelFontColor Font-color list box
sel_ListBoxes SelBackgroundColor Background-color list box
sel_ListBoxes SelParColor Paragraph-color list box
sel_ListBoxes SelStyle User-defined list box

Figure 3: Some groups of buttons available in TWPToolBar.

New & UsedNew & Used
If you’re saving to the HTML format, you can
add further structuring. For example, you can
create an automatic list with numbers or bul-
lets, and indicate page breaks, retrieve the cur-
rent page number, get the starting line of a
page, and get the starting paragraph line of
the page.

The BackgroundScrolling property lets you opti-
mize the scroll speed by scrolling the back-
ground image with the text. You can control the
visual appearance of bookmark, header, HTML,
and protected text, as well as the insertion point.
Many properties and methods for navigating
text are included. For example, the GetPosition
method retrieves the current absolute cursor
position from the start of the text.

We’ve examined this central component. Now
let’s take a look at the supporting cast.

Basic Interface Components
The components often used with
TWPRichText include TWPToolBar,
TWPRuler, TWPVertRuler (new to this ver-
While most Delphi developers are aware of what Rich Text Format (RTF) means, a few may not be. Just in case, here’s a
quick refresher.

In the early days of personal computing, there was just ASCII — plain, unformatted text. Even the most sophisticated of
today’s word processing programs, such as Microsoft Word and WordPerfect, still allow users to save their work in this format.

However, application users are demanding. As word processors developed, each strove to provide the maximum in text for-
matting options, including the ability to change font faces, font sizes, and other characteristics. It was important to be able
to do this at any point in a document — even in the middle of a line.

Each word processor developed its own proprietary format to include formatting information along with the characters
themselves. But there needed to be a means of communicating not just ASCII characters between different word process-
ing programs, but also common formatting options. Thus, RTF was born. The following line is from a rich text document:

RTF normal; RTF Bold; RTF Italic; RTF Bold and Italic; and RTF underlined.

When viewed in text format (and after deleting several lines of preliminary information on fonts, colors, and style charac-
teristics), it looks like this:

\deflang1033\pard\plain\f2\fs20 RTF normal; \plain\f2\fs20\b RTF Bold;\plain\f2\fs20 \plain\f2\fs20\i RTF
Italic;\plain\f2\fs20 \plain\f2\fs20\b\i RTF Bold and Italic;\plain\f2\fs20 and \plain\f2\fs20\ul RTF underlined.\plain\f2\fs20
\par }

The RTF codes shown above represent a small sample of this rich (forgive the pun) language. .RTF files are also used as
the main source file for Windows Help file systems. Unless you’re writing your own Help-authoring program or RTF com-
ponent, you needn’t be concerned with the details of the RTF language itself — only about how you can use rich text to
enhance your applications.

— Alan C. Moore, Ph.D.

Rich Text Format — A Quick Refresher

Figure 4: The statusstrings dialog box makes it easy to set up a
status bar.

New & Used
sion), and TWPStatusBar. TWPToolBar comes with a series
of built-in tool buttons that enable many common opera-
tions, such as opening or saving files, changing font type,
size, and characteristics — such as italic or bold face —
and changing the alignment. With the TWPToolCtrl com-
ponent, you can use third-party toolbar components with
TWPToolButton.

Linked to TWPRichText as one of its properties,
TWPToolBar provides a great deal of built-in functionality.
Figure 3 shows the most important groups of buttons and
their functions. The sel_ActionIcons group triggers many
applications and file-manipulation actions; the
sel_EditIcons group provides easy access to the various text-
editing options; and the sel_ListBoxes group makes useful
list boxes available. In many cases, you enable their func-
tionality by simply checking the items in each of these cat-
egories. In a few cases, you need to write a minimal
amount of code to execute the event. The OnIconSelection
event allows you to intercept clicks on the tool buttons.

In addition to these groups, there are the sel_StatusIcons,
which toggle various editing modes, including SelNormal,
SelBold, SelItalic, SelUnder, SelHyperLink, SelStrikeOut,
SelSuper, SelSub, SelLeft, SelHidden, SelRTFCode, SelLeft,
SelRight, SelBlock, and SelCenter. With WPTools’ strong
43 October 1998 Delphi Informant

Figure 5: WPTools’ interface components — toolbar, two rulers, an
bar — allow you to build feature-rich applications.
database support (which we’ll be discussing), there are a
number of database-related buttons that perform database
navigating and selecting operations: SelToStart, SelNext,
SelPrev, SelToEnd, SelEdit, SelAdd, SelDel, SelCancel, and
SelPost. TWPStatusBar is a very flexible component that
can be used in many types of projects. It generally uses a
set of strings that can be easily manipulated from a pro-
gram; it can also use a gauge to show the ongoing status of
an operation.

While you need to write a bit of code to implement
many of the status-bar messages, it’s not difficult. By
clicking TWPAltStatusBar’s String property in the Object
Inspector, you bring up the statusstrings dialog box (see
Figure 4). Here, you can select from a number of pre-
defined status items to set their properties. After that,
you need to define event handlers and you’re ready to
roll. To set up the status bar shown in Figure 5, I simply
wrote the following three methods, adding just one line
of code to each:

procedure TWordPadForm.WPRichText1CharacterAttrChange(

Sender: TObject; Attribute: TWPSetModeControl);

begin
WPAltStatusBar1.SetString(stFont,'Font: ' +

WPRichText1.CurrAttr.FontName);

end;

procedure TWordPadForm.WPRichText1XPosChanged(

Sender: TObject);

begin
WPAltStatusBar1.SetString(stXPos,'Col: ' +

IntToStr(WPRichText1.CPColNr+1));

end;

procedure TWordPadForm.WPRichText1YPosChanged(

Sender: TObject);

begin
WPAltStatusBar1.SetString(stLine, 'Line: ' +

IntToStr(WPRichText1.GetLineNumber+1));

end;

WPTools includes two rulers — horizontal and vertical
— that provide strong support for building desktop
publishing applications. TWPRichText provides built-

in table support. These features, and more, are
shown in Figure 5.

Up to this point, we’ve concentrated on basic word
processing tools. But there is quite a bit more to
this library.

Beyond Word Processing
Besides supporting word processing, WPTools pro-
vides a data-aware version of its main component; it
also provides advanced graphics- and object-manipu-
lation capabilities. Figure 6 shows an application that
demonstrates WPTools’ database support. Note how
much control you have over the formatting of indi-
vidual fields. This sample application also includes
database opening and navigation controls, and fea-
tures WPTools’ useful merging capabilities.

d status

Figure 7: WPTools’ TWPEdit supports single-line RTF editing.

Figure 8: You can embed, save, and load graphics or other
objects directly in an .RTF document.

44 October 1998 Delphi Informant

Figure 6: The database support allows you to format individual

New & Used
This library also includes built-in drag-and-drop
support. When enabling drag-and-drop, you can
choose to either keep or discard RTF formatting.
Of course, you could hard-code this into your
application, or give users the choice. If you need
to create an application with single-line RTF edit
controls (rather than memo controls), WPTools’
TWPEdit supports this, as shown in Figure 7.
Note that the formatting buttons at the left con-
trol the three RTF edit controls at the top, as
well as the RTF memo control at the bottom.

Finally, WPTools provides support for embed-
ding graphics and other objects directly in an
.RTF document, as shown in Figure 8. In addi-
tion to dropping text from one window to anoth-
er, you can also program WPTools to drag con-
trols, such as TPanel or TButton, to the memo.
The text is retrieved using the GetTextBuf

method, which exists in all descendants of TControl. This
sample application shows quite a few embeddable objects,
but there’s really no limit. You can save the document with
all the embedded objects. When you reload the document,
all the objects appear in the proper locations within the
document.

Conclusion
On the whole, I feel this is an excellent library. I’ve seen
considerable improvement in the few short months I’ve
been working with it. The new version includes significant
enhancements, such as supporting headers and footers. It
also has enhanced support for tables, including inserting
rows, changing cell and column widths, and marking
blocks of the table.

With WPTools’ support for
embedded objects, you can
add support for third-party
image libraries. There’s also
strong support for
QuickReport versions 1
and 2 (two example pro-
grams), third-party tool-
bars, and spell-checking
components. Because you
have access to the vast
majority of the source code
(the code for the RTF
engine is available separate-
ly), you can add additional
support for other spell-
checkers or reporting tools.

WPTools isn’t without
drawbacks, but I consider
them minor. While the
documentation has
improved considerably

WPTools from Julian Ziersch of Munich,
Germany is a superb collection of Rich
Text Format (RTF) components. Because it
includes its own RTF engine, it gives
developers a great deal of control over
formatted text. In creating word process-
ing applications, it supports standard
paragraph properties (indentation, spac-
ing, alignment, margins, and tabs), charac-
ter attributes (bold, italic, superscript, sub-
script, color, etc.), and support for hyper-
links, protected text, hidden text, headers,
footers, bookmarks, and mail-merge.
Beyond its strictly RTF features, it allows
the incorporation of graphics and Delphi
objects in .RTF documents.

Julian Ziersch Software
Maximilianstrasse 25
80539 Munich, Germany

E-Mail: wptools@compuserve.com
Web Site: http://www.wptools.com
Price: WPTools 2.07, US$178; upgrade
for owners of version 1.x, US$80.

 fields.

http://www.wptools.com

New & Used
since the first version, there are still some English errors
here and there (the author is German, and while his com-
mand of English is excellent, the documentation could
benefit from thorough editing). I also hope that a future
version would include printed documentation. The final
drawback comes from the memory-intensive nature of
working with .RTF files. Screen updates and other tasks
seemed a bit slow at times. Based on the changes I’ve seen
in the past several months, I expect all of these factors to
improve in future versions.

I’m very pleased with this library’s design and features, and
particularly with its creator’s commitment to improving it. If
you need RTF processing in your applications, I think you
will be satisfied with WPTools. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabili-
ties in applications, particularly sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.
45 October 1998 Delphi Informant

So Many Standards
Or, TLAs A Go Go

From the Trenches
Directions / Commentary
T he pace of technology has been dizzying. Trying to keep up has given a new techno-meaning to the
phrase “Keeping up with the Joneses.” Just take a look at some of the possibilities: COM, DCOM,

CORBA, MIDAS, MTS, MSMQ, IIS, ISAPI, HTTP, FTP, ASP, DDE, OLE, ODBC, OLEDB, ADO, VBA, and RDS.
I didn’t even mention beta products, or
other acronyms found throughout the
IT landscape. For example: COM+,
DNA, SMS, MFC, ATL, CDO, SAP,
JFC, JDBC, and WFC.

You’re doing well if you know what all
these acronyms stand for. If you use
them, you’re doing even better!

When developers first moved to
Windows, the learning curve was mon-
umental. Remember your first foray
into the Windows SDK while learning
a new paradigm known as event-driven
programming? Then, just as we got
comfortable with that SDK and began
to shorten that learning curve, we
received the Win32 SDK, and a new
technology revolution sprang to life.
Learning curves have been steepened
dramatically once again.

The question that begs to be asked is:
“How has this advance in technology
helped programmers in general and
Delphi programmers specifically?”

Using new technology to solve prob-
lems that were previously time-consum-
ing, or even impossible, is the best use
for emerging technology. To do this
successfully, you must have a firm grasp
of technology and constantly stay on
top of it to separate what will truly
work for you — and what is just hype.
46 October 1998 Delphi Informant
On the other hand, using new tech-
nology for technology’s sake usually
merits a red flag in any development
effort. If you find you must incorpo-
rate technology into your application
to be the first to market, expect that
your schedule will not be as smooth as
one using a tried and true approach.
The benefits of incorporating leading-
edge technology into your application
will bring great rewards when you are
the one who has a stronghold on the
market. This also makes those bumps
along the development path seem
inconsequential in hindsight.

Technology changes — rapidly. That’s
a fact no one can dispute. You must
be prepared to deal with change, even
if you aren’t one that likes to be on
the forefront of technology. You can
wait for the dust to settle and let the
marketplace declare the winner, but
you’re then faced with the same learn-
ing curve. And if your competition is
already using that technology, they
will have an enormous advantage
because they have already climbed that
learning curve.

And speaking of the Joneses, I’m
reminded of the guardian of the Holy
Grail in the third Indiana Jones
movie. In this movie, he guards the
chalice, waiting for someone to come
and drink from the cup. If they
choose the true Holy Grail from a
wall full of imposters, they will be
rewarded with eternal life. If they
choose the wrong cup, they face
instant and certain death. While
Indiana Jones is scouring the wall
looking for the Holy Grail, the
guardian says: “Choose wisely.”

Similarly, if you drink from the wrong
technology cup, you are certainly
doomed. At least until you can make
reparations with management and
release your product.

The moral of the story? There are myri-
ad choices out there — all of which
seem promising. Knowing your busi-
ness requirements, the skill set of your
development team, and your customer
base will certainly help you decide on a
set of technologies that will best help
you deliver a quality application. Once
you’ve done your homework and can
justify your position, you can certainly
say you chose wisely. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact
him at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary

D

In the April, 1998 issue of Delphi Informant, I discussed various vendor-related Delphi Web sites. This month, I’ll

examine sites related to Delphi publishers and authors. Vendors and publishers have one thing in common: They’re

in business. And like the vendor sites we examined earlier, the publisher and author sites provide valuable resources.

RAD Publishers and Authors: Delphi on the Web
Three top programming publishers. For many
years, the Cobb Group has been a leading pub-
lisher of software-related magazines, including the
Delphi Developer’s Journal (DDJ). Its Web site
contains material related to just about every
aspect of programming. For Delphi programmers,
there are many downloadable files, some electron-
ic articles, and information related to DDJ. The
site provides a gateway to several Delphi list
servers and a message board. I was disappointed,
however, that not all of its lists were included —
only the main Delphi thread I helped moderate.

Like Cobb, the Coriolis Group provides informa-
tion on many development environments. A
major producer of developer books and the eclec-
tic journal, Visual Developer Magazine (with Ray
Konopka’s Delphi column), the VDM section of
its site features many free downloads, including
back issues in electronic form. Be sure to read
Jeff Duntemann’s excellent paper on “The
Virtual Encyclopedia Initiative,” a project intend-
ed to provide a solution to the increasingly diffi-
cult task of finding information on the Web.

Somewhat newer, the Informant Communi-
cations Group (ICG), publisher of this magazine,
has certainly made its mark. As you would expect,
there are sample articles, and the very first issue is
in electronic format. The download section is
among the best of the sites I’ve visited, rivaling
some of the major Delphi sites. Not only can you
download the source code for all the articles that
have appeared in Delphi Informant, you can also
download many third-party tools. Finally, ICG
has provided a great service to the Delphi com-
munity, hosting Robert Vivrette’s Unofficial
47 October 1998 Delphi Informant
Newsletter of Delphi Users (UNDU). If you’ve
never read UNDU, you’re missing out on a lot of
free information.

Other Delphi magazines. No doubt many of
you are familiar with The Delphi Magazine.
Published in the United Kingdom, it includes
articles by leading European authors. Its Web
site includes sample articles, one entire issue,
and files that accompany the various issues. The
links to Delphi-related sites are especially good,
and include some unusual ones I haven’t seen
anywhere else.

Delphi Developer, published by Pinnacle Press,
also has a good Web site. I found its tips sec-
tion particularly interesting and worthwhile.
While they provide a sample of one of their
issues, their downloads are restricted to sub-
scribers only. What a shame.

Major authors. In April’s issue, I made reference
to Ray Konopka, Delphi author and tool produc-
er. Because I’m discussing Delphi publishers, I’d
like to mention the sites of three other authors:
Marco Cantù, Ray Lischner, and Bob Swart.
Cantù’s site (http://www.marcocantu.com) is
excellent, containing free downloads from his
recent books, great links, book reviews, and other
interesting material, such as opinion essays. Be
sure to read his piece on INPRISE.

Ray Lischner’s Web site (http://www.
tempest-sw.com) contains useful links and
downloads, including a Delphi 3 update of
the Secrets of Delphi 2 [Waite Group Press,
1996], and a Delphi 4 update for Hidden
Paths of Delphi 3 [Informant Press, 1997].
For a nice diversion, jump to the “Have Fun
with the Spammers” page, and follow the
links for a while.

In discussing authors’ sites I would be remiss if I
did not mention Dr. Bob’s (http://www.
drbob42.com). Bob Swart, one of the more pop-
ular presenters at INPRISE conferences, has a site
full of downloads, book and tool reviews, great
links, articles, and more.

Rating the sites. My summary evaluation of
the publisher sites is given in the accompanying
table. I recommend visiting them all, as well as
the author sites. This winter I plan to return to
this theme, exploring sites that are “off the
beaten path.” Some of them will be specifically
related to Delphi, while others will feature gen-
eral programming information of interest to
Delphi developers. If you know of any that fit
this description, please send them to me at
acmdoc@aol.com. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky
State University, specializing in music composi-
tion and music theory. He has been developing
education-related applications with the Borland
languages for more than 10 years. He has pub-
lished a number of articles in various technical
journals. Using Delphi, he specializes in writing
custom components and implementing multi-
media capabilities in applications, particularly
sound and music. You can reach Alan via e-mail
at acmdoc@aol.com.
ELPHI
Web Site (http://…) Article Technical Communication Samples Links

Downloads Papers Services

Delphi Developer’s Journal Excellent Very good Excellent Very good Limited
www.cobb.com/ddj
Visual Developer Magazine Excellent Good None (coming soon) Excellent None
www.coriolis.com
The Delphi Magazine Excellent Good Good Good Excellent
www.itecuk.com/
delmag/index.htm
Delphi Developer Limited Very good None Good Good
www.pinpub.com/ to subscribers
delphi/home.htm
Delphi Informant Excellent Very good None Very good Limited
www.informant.com

http://www.drbob42.com
http://www.drbob42.com
http://www.marcocantu.com
http://www.tempest-sw.com
http://www.tempest-sw.com
http://www.cobb.com/ddj
http://www.coriolis.com
http://www.itecuk.com/delmag/index.htm
http://www.pinpub.com/delphi/home/htm
http://www.informant.com

	Table of Contents
	Delphi Tools
	Baltic Solutions Releases HTMLReport 2.0
	Chant Offers SpeechKit 2
	HotData Launches Internet Service for Automated Data Access
	Mustang Announces IMC Architect
	Excel Software Ships WinA&D 2.1
	AnyWare Offers AppTools VCL 1.04

	Newsline
	INPRISE Named Among Top Enterprise Vendors
	Eshed Announces Gentia Wizard
	INPRISE and Referentia to Deliver JBuilder Training Software
	INPRISE Centralizes European Organization
	Errors and Omissions

	On the Cover: Crystal Reports
	Some History
	Printing a Simple Report
	Selecting Reports to Print
	Formula and Sorting Options
	Destination
	DataFilesand the OnLoadDataFilesEvent
	Miscellaneous Tricks and Tips: Installation and Upgrading
	Divider Lines
	Crosstab Reports
	Changing Printers
	Sending Reports via VIM
	Reducing the Run-time Footprint
	Conclusion

	Dynamic Delphi: Reports in DLLs
	Report and Parameter Definitions
	Report Launch Form
	Report Development and Test Application
	The Reports DLL

	Algorithms: Topological Sorting
	A Simple Algorithm
	A Faster Algorithm
	Delphi Code
	Conclusion
	Begin Listing One — Topological Sorting

	Greater Delphi: Writing to the NT Event Log
	Delphi Deficiency
	Terminology
	A First Write to the Event Log
	The NT Registry, Event Source, and Message File
	Building an Event Message File
	Create the Message Compiler Source File
	Compile the Message Compiler Source File
	Create a Resource-only DLL
	Integration of Event Message File with Applications and Deployment
	Demonstration Application
	Conclusion

	DBNavigator: Delphi Database Development
	Tables, Data, and Files
	Basic TDBDataSetConfiguration
	Accessing Data Using Tables
	Basic Query Configuration
	Preparing Queries
	A Query Example
	Tables vs. Queries
	Using Stored Procedures
	Stored Procedure: Example 1
	Stored Procedure: Example 2
	Conclusion

	New & Used: Wise Installation System 6.01
	The Installation Base
	File Management
	Wise Choices
	Wise Web Support
	Conclusion

	New & Used: WPTools
	Overview
	TWPRichText: A Superior RTF Component
	Structuring Documents
	Basic Interface Components
	Beyond Word Processing
	Conclusion
	Rich Text Format — A Quick Refresher

	From the Trenches: So Many Standards
	File I New: RAD Publishers and Authors

